HDU 5750 Dertouzos

题意:

  给定n,d,求小于n的且d为其非自身最大因子的数的个数。

思路:

  要d是最大因子,这个数x=d*k,k必须是<=(d的最小因子)的一个素数,且k<n/d&&k<=d。

  若k为合数,k=a*b(a,b不为1和d),那a*d就比d大,矛盾。

  若k为质数,k>d的最小因子c,d'=d/c*k>d,矛盾。

  答案即为2~min([n/d],d的最小因子)中质数的个数(个数在筛的时候求小前缀和就好)。

  先用素数筛就出1~50000的素数,大约5000个,检验每个<[n/d]的素数是不是d的因子,取第一个检验到的,如果没有就取[n/d]。

  最后输出答案。

#include<iostream>
#include<string.h>
#include<cstdio>
using namespace std;
bool isprime[50001];
int coun[50001];
int prime[10000];
int primecnt=0;
void steve(){
    for(int i=2;i<50000;i++){
        if(isprime[i])prime[++primecnt]=i;
        for(int j=1;j<=primecnt&&i*prime[j]<50000;j++){
            isprime[i*prime[j]]=0;
            if(i%prime[j]==0)break; 
        }
    }
}
int main(){
    memset(isprime,1,sizeof(isprime));
    int n;
    cin>>n;
    steve();
    for(int i =2;i<50000;i++)
    if(isprime[i]) coun[i]=coun[i-1]+1;
    else coun[i]=coun[i-1];
    int a,b,c,d;
    for(int i=0;i<n;i++){
        scanf("%d%d",&a,&b);
        c=a/b;
        if(b*c==a)c--;
        for(int j=1;prime[j]<=c&&j<=primecnt;j++)
        if(b%prime[j]==0){
            b=prime[j];
            break;
        }
        b=min(b,c);
        printf("%d\n",coun[b]);
    }
    return 0;
} 

 

转载于:https://www.cnblogs.com/Gsimt/p/10064077.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值