【BZOJ】【2190】【SDOI2008】仪仗队

欧拉函数/莫比乌斯函数

  Orz iwtwiioi

  这个嘛……很明显在同一条线上的两个点一定是满足  x1*k=x2,y1*k=y2,(好吧这个表示方式有点傻逼,懂得就好了)那么这条线上的点只有第一个会被看到,即x,y互质的那一个点(如果gcd(x,y)==k>1那么肯定在它前面还有点(x/k,y/k) )

  但是马上你就会指着鼻子骂我说这特么不是胡扯么……(2,1) 和 (4,2)明明都能被看到!那是因为这里的“坐标原点”是(1,1)啊……所以坐标都减个1就好了→_→

  所以就是求 ………………看iwtwiioi的博客去吧- -b 我不会用LeTeX……

  嗯就是求:(原谅我截图跑……iwtwiioi实在太神了)

          

  这样一个东西……就是对于每个x,求一共有多少个y与它互质,这不就是欧拉函数的定义么→_→

  所以可以写成

          【然后再乘二(x和y交换算两组)】

  最后还有一点细节要注意:(1,1)这个点统计了两次,(1,0) 和 (0,1)这两个点没有算。

 

  还有一种姿势,如果是用莫比乌斯函数写的话,第一个和式还可以写成:【Orz lqybzx

          sigma{ mu[i]*(n/i)*(n/i) }  (不要吐槽我的语法……)

 

我的代码:(线性筛模板参见《线性筛法与积性函数》——贾志鹏)

 1 /**************************************************************
 2     Problem: 2190
 3     User: Tunix
 4     Language: C++
 5     Result: Accepted
 6     Time:24 ms
 7     Memory:1624 kb
 8 ****************************************************************/
 9  
10 //BZOJ 2190
11 #include<cstdio>
12 #include<cstring>
13 #include<cstdlib>
14 #include<iostream>
15 #include<algorithm>
16 #define rep(i,n) for(int i=0;i<n;++i)
17 #define F(i,j,n) for(int i=j;i<=n;++i)
18 #define D(i,j,n) for(int i=j;i>=n;--i)
19 using namespace std;
20 int getint(){
21     int v=0,sign=1; char ch=getchar();
22     while(ch<'0'||ch>'9'){ if (ch=='-') sign=-1; ch=getchar();}
23     while(ch>='0'&&ch<='9'){ v=v*10+ch-'0'; ch=getchar();}
24     return v*=sign;
25 }
26 /******************tamplate*********************/
27 const int N=40010;
28 int phi[N],prime[N];
29 bool check[N];
30 void getphi(int n){
31     memset(check,0,sizeof check);
32     phi[1]=1;
33     int tot=0;
34     F(i,2,n){
35         if(!check[i]){
36             prime[tot++]=i;
37             phi[i]=i-1;
38         }
39         rep(j,n){
40             if(i*prime[j]>n) break;
41             check[i*prime[j]]=1;
42             if(i % prime[j]==0){
43                 phi[i*prime[j]]=phi[i]*prime[j];
44                 break;
45             }
46             else phi[i*prime[j]]=phi[i]*(prime[j]-1);
47         }
48     }
49 }
50 int main(){
51     int n=getint(),ans=0;
52     getphi(n);
53     F(i,1,n-1)
54         ans+=phi[i];
55     ans=ans*2+1;
56     printf("%d\n",ans);
57     return 0;
58 }
欧拉函数

 

 1 /**************************************************************
 2     Problem: 2190
 3     User: Tunix
 4     Language: C++
 5     Result: Accepted
 6     Time:28 ms
 7     Memory:1624 kb
 8 ****************************************************************/
 9  
10 //BZOJ 2190
11 #include<cstdio>
12 #include<cstring>
13 #include<cstdlib>
14 #include<iostream>
15 #include<algorithm>
16 #define rep(i,n) for(int i=0;i<n;++i)
17 #define F(i,j,n) for(int i=j;i<=n;++i)
18 #define D(i,j,n) for(int i=j;i>=n;--i)
19 using namespace std;
20 int getint(){
21     int v=0,sign=1; char ch=getchar();
22     while(!isdigit(ch)) {if(ch=='-') sign=-1; ch=getchar();}
23     while(isdigit(ch))  {v=v*10+ch-'0'; ch=getchar();}
24     return v*sign;
25 }
26 /*******************template********************/
27 const int N=40001;
28 int prime[N],mu[N];
29 bool check[N];
30 void getmu(int n){
31     memset(check,0,sizeof check);
32     mu[1]=1;
33     int tot=0;
34     F(i,2,n){
35         if(!check[i]){
36             prime[tot++]=i;
37             mu[i]=-1;
38         }
39         rep(j,tot){
40             if(i*prime[j]>n) break;
41             check[i*prime[j]]=true;
42             if(i%prime[j]==0){
43                 mu[i*prime[j]]=0;
44                 break;
45             }
46             else mu[i*prime[j]]=-mu[i];
47         }
48     }
49 }
50 int main(){
51     int n,ans=0;
52     n=getint();
53     n--;
54     getmu(n);
55     F(i,1,n) ans+=mu[i]*(n/i)*(n/i);
56     ans=ans+2;
57     printf("%d\n",ans);
58     return 0;
59 }
60 
莫比乌斯函数

 

转载于:https://www.cnblogs.com/Tunix/p/4270345.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值