1 下载
下载地址:http://mirror.bit.edu.cn/apache/hadoop/common/stable2/
2 解压
将文件解压到 /usr/local/hadoop
cd ~/下载 tar -zxf hadoop-2.9.1.tar.gz sudo mv ./hadoop-2.9.1/ /usr/local/hadoop cd /usr/local/hadoop
此时可以查看Hadoop版本信息:
./bin/hadoop version
3 hadoop伪分布式配置
3.1 配置hadoop中的JAVA_HOME
到hadoop的安装目录修改配置文件“/usr/local/hadoop/etc/hadoop/hadoop-env.sh”,在里面找到“export JAVA_HOME=${JAVA_HOME}”这行,然后,把它修改成JAVA安装路径的具体地址,比如,“ export JAVA_HOME=/usr/local/jdk1.8.0_191”,然后,再次启动Hadoop。
修改后:
令文件生效:
3.2 ssh登陆
集群、单节点模式都需要用到 SSH 登陆(类似于远程登陆,你可以登录某台 Linux 主机,并且在上面运行命令),Ubuntu 默认已安装了 SSH client,此外还需要安装 SSH server:
sudo apt-get install openssh-server
安装后,可以使用如下命令登陆本机:
ssh localhost
此时会有如下提示(SSH首次登陆提示),输入 yes 。然后按提示输入密码 hadoop,这样就登陆到本机了。
但这样登陆是需要每次输入密码的,我们需要配置成SSH无密码登陆比较方便。
首先退出刚才的 ssh,就回到了我们原先的终端窗口,然后利用 ssh-keygen 生成密钥,并将密钥加入到授权中:
exit # 退出刚才的 ssh localhost cd ~/.ssh/ # 若没有该目录,请先执行一次ssh localhost ssh-keygen -t rsa # 会有提示,都按回车就可以 cat ./id_rsa.pub >> ./authorized_keys # 加入授权
3.3 配置HADOOP_HOME
在 ~/.bashrc 中,增加如下内容(设置过程与 JAVA_HOME 变量一样,其中 HADOOP_HOME 为 Hadoop 的安装目录)
#hadoop
export HADOOP_HOME=/usr/local/hadoop export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native export PATH=$PATH:$HADOOP_HOME$/bin export PATH=$PATH:$HADOOP_HOME$/sbin export HADOOP_MAPRED_HOME=$HADOOP_HOME export HADOOP_COMMON_HOME=$HADOOP_HOME export HADOOP_HDFS_HOME=$HADOOP_HOME export YARN_HOME=$HADOOP_HOME export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib" export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native:$JAVA_LIBRARY_PATH export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
修改后如下图所示:
修改/usr/local/hadoop/etc/hadoop/core-site.xml文件配置:
sudo gedit /usr/local/hadoop/etc/hadoop/core-site.xml
修改为一下内容:
<configuration> <property> <name>fs.default.name</name> <value>hdfs://localhost:9000</value> </property> </configuration>
修改YARN-site.xml文件配置:
sudo gedit /usr/local/hadoop/etc/hadoop/yarn-site.xml
修改为以下内容:
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
复制文件:
sudo cp /usr/local/hadoop/etc/hadoop/mapred-site.xml.template /usr/local/hadoop/etc/hadoop/mapred-site.xml
然后进行编辑:
sudo gedit /usr/local/hadoop/etc/hadoop/mapred-site.xml
修改为以下内容:
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration>
配置hdfs-site.xml文件:
sudo gedit /usr/local/hadoop/etc/hadoop/hdfs-site.xml
修改为以下内容:
<configuration> <property> <name>dfs.replication</name> <value>3</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>file:/usr/local/hadoop/hadoop_data/hdfs/namenode</value> </property> <property> <name>dfs.namenode.data.dir</name> <value>file:/usr/local/hadoop/hadoop_data/hdfs/datanode</value> </property> </configuration>
Hadoop 可以在单节点上以伪分布式的方式运行,Hadoop 进程以分离的 Java 进程来运行,节点既作为 NameNode 也作为 DataNode,同时,读取的是 HDFS 中的文件。
Hadoop 的配置文件位于 /usr/local/hadoop/etc/hadoop/ 中,伪分布式需要修改2个配置文件 core-site.xml 和 hdfs-site.xml 。Hadoop的配置文件是 xml 格式,每个配置以声明 property 的 name 和 value 的方式来实现。
Hadoop配置文件说明
Hadoop 的运行方式是由配置文件决定的(运行 Hadoop 时会读取配置文件),因此如果需要从伪分布式模式切换回非分布式模式,需要删除 core-site.xml 中的配置项。
此外,伪分布式虽然只需要配置 fs.defaultFS 和 dfs.replication 就可以运行(官方教程如此),不过若没有配置 hadoop.tmp.dir 参数,则默认使用的临时目录为 /tmp/hadoo-hadoop,而这个目录在重启时有可能被系统清理掉,导致必须重新执行 format 才行。所以我们进行了设置,同时也指定 dfs.namenode.name.dir 和 dfs.datanode.data.dir,否则在接下来的步骤中可能会出错。
3.4 格式化
配置完成后,执行 NameNode 的格式化,执行以下命令:
创建namenode数据存放目录:
sudo mkdir -p /usr/local/hadoop/hadoop_data/hdfs/namenode
创建爱你datanode数据存放目录:
sudo mkdir -p /usr/local/hadoop/hadoop_data/hdfs/datanode
将Hadoop目录的所有者更改为chb:
sudo chown chb:chb -R /usr/local/hadoop
格式化:
hadoop namenode -format
运行上述命令之后,出现“successfully formatted.“则证明格式化成功。
启动HDFS:
start-dfs.sh
启动Hadoop MapReduce框架的Yarn:
当然,也可以同时启动上述两者:
start-all.sh
启动完成后,可以通过命令 jps 来判断是否成功启动,若成功启动则会列出如下进程: “NameNode”、”DataNode” 和 “SecondaryNameNode”(如果 SecondaryNameNode 没有启动,请运行 sbin/stop-dfs.sh 关闭进程,然后再次尝试启动尝试)。如果没有 NameNode 或 DataNode ,那就是配置不成功,请仔细检查之前步骤,或通过查看启动日志排查原因。
jps#可不是jsp
打开浏览器,输入地址:http://localhost:8088/可以看到如下界面: