dadadaplz
码龄10年
关注
提问 私信
  • 博客:256,112
    256,112
    总访问量
  • 43
    原创
  • 782,079
    排名
  • 95
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2015-01-04
博客简介:

庞琳卓的博客

查看详细资料
个人成就
  • 获得198次点赞
  • 内容获得49次评论
  • 获得475次收藏
创作历程
  • 2篇
    2019年
  • 12篇
    2018年
  • 22篇
    2017年
  • 6篇
    2016年
  • 1篇
    2015年
成就勋章
TA的专栏
  • 云端SLAM
    1篇
  • 统计机器学习
    10篇
  • Hadoop/Spark
    2篇
  • Linux
    2篇
  • 深度学习
    8篇
  • 强化学习
    4篇
  • 目标检测与跟踪
  • Meta learning
  • Python
    1篇
  • 数据结构
    8篇
  • Socket编程
    2篇
  • 优化
    2篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Dantzig-Wolfe分解

适用场景Dantzig-Wolfe分解的适合用于求解一些具有特定结构的LP & MILP原始问题其中,第一个等式约束为conflicting constrain,剩余的约束都是独立的blocks。Minkowski-Weyl’s representation theorem采用这一定理,可以将多面体中的任意一个点都用多面体的extreme points及extrem...
原创
发布博客 2019.07.26 ·
10699 阅读 ·
6 点赞 ·
2 评论 ·
56 收藏

Lagrangian Decomposition

问题一-Decomposition in conflicting variablesprimal decomposition算法思想primal decomposition算法步骤dual decomposition思想dual decomposition算法步骤算法思想的interpretation问题二-Decomposition in co...
原创
发布博客 2019.07.26 ·
1254 阅读 ·
4 点赞 ·
1 评论 ·
4 收藏

BFPRT算法及python实现

from mergeSort_recursion import mergesortimport randomdef partion(a, m, m_index): #对a进行排序,使得比m小的元素放在m前面,比m大的元素放在m后面 #输入:m_index(m在a中的index) #返回m前面, m后面各自元素的数目,以及m在新数组中的index #将m与数组第一个元素交换位置,然...
原创
发布博客 2018.04.02 ·
1730 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

kd树在KNN中的应用

这 是 一 个 伪 代 码!!!写这篇文章的目的在于理解kd树在KNN算法中的应用, 弄清楚整个搜索和回溯过程首先, 定义kd树结点的结构体#include <stdio.h>typedef struct KD_Node{ int kindex; //关键点直方图方差最大向量系列位置 int kvalue;//直方图方差最大向量系列中最中间模值 int n; //...
原创
发布博客 2018.03.15 ·
616 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

图的深度优先和广度优先遍历

#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define MAX_NODE_NUM 10typedef int ElemType;typedef enum {DG,UDG} GKind;typedef void (*VISIT)(ElemType); //定义一个函数指...
原创
发布博客 2018.03.09 ·
441 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

霍夫曼树和霍夫曼编码

#include <stdio.h>#include <stdlib.h>#include <cstring>using namespace std;typedef struct HuffNode{ int weight; int parent, lchild, rchild;}HuffNode, HuffTree;void select(...
原创
发布博客 2018.03.04 ·
1349 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

N-皇后的回溯解法

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。#include <stdio.h>#include <math.h>#include <stdlib.h> #define N_size 7#define INITIAl -1000int N=N_size;int count = 0;void init(...
原创
发布博客 2018.03.04 ·
348 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

数据结构之稀疏矩阵

#include <stdio.h>#define MAX_SIZE 20#define MAXR 10typedef int ElemType;typedef struct Triple{ int i; int j; ElemType e;}Triple;typedef struct SparseMatrix{ Triple data[MAX_SIZE]; int rpos[MAXR...
原创
发布博客 2018.03.01 ·
503 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

数组的维界基址和映像函数常量基址

*base:数组元素基址,以二维数组A为例,将数组(按行或者按列)拉成一个向量L所组成的线性结构的首地址.*bounds:数组维界地址,指向一个一维数组B,它存放了数组A各维度元素的数目.假设数组A是(3,4,5)大小的, 则数组B=[3,4,5]*constants:数组映像函数常量基址,指向一个数组C, 它存放了"数组A各个维度上的数字加一时, 元素在线性结构L上所移动的距离".举个栗子吧!首...
原创
发布博客 2018.02.28 ·
7834 阅读 ·
59 点赞 ·
11 评论 ·
117 收藏

socket传输彩色图和深度图

服务器端负责接收并保存客户端传来的彩色图和深度图:/************************************************************************* > File Name: C++/socket/image.cpp > Author: Linzhuo Pang > Mail: panglinzhuo@gm...
原创
发布博客 2018.02.27 ·
871 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

C++ socket编程实例

服务器端:#include <sys/types.h> #include <sys/socket.h>#include <netinet/in.h>#include <netdb.h>#include <stdio.h>#include <iostream>#include <arpa/inet.h>
原创
发布博客 2018.02.27 ·
1956 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

线性表-顺序存储结构的C语言实现

#include #include #define INIT_SIZE 10#define ERROR -1#define OK 1typedef int ElemType;typedef bool Status;typedef Status (*CALL_FN)(ElemType);typedef struct list{ ElemType* elem; ElemT
原创
发布博客 2018.02.02 ·
570 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

归并排序

#include #include #include void display(int* a, size_t size){ for(int i = 0; i<=size-1; i++) printf("%d ", a[i]); printf("
");}void Merge(int* a, int lo, int mid, int hi){ int* tmp = (
原创
发布博客 2018.02.01 ·
189 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python爬取扇贝“【无老师】7天搞定TOEFL单词”

#!/usr/bin/env python3from bs4 import BeautifulSoupimport requestsimport csvimport bs4import codecs#检查url地址并返回网页contentsdef check_link(url): try: r = requests.get(url)
原创
发布博客 2018.01.18 ·
2074 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Meta Learning

Meta learning就是learning to learn,字面意思就是学会学习。想一下人是怎么学会学习的: 采用一种学习方法(比如刷题/背题/背概念等)进行学习,然后得到反馈(成绩是否提高),如果是正的反馈(成绩不断提高),说明这种学习方法是有效的。 那么神经网络是如何学会学习的呢? 采用一种学习方法(对于神经网络来说,就是模型的参数)进行学习,然后得到反馈(误差关于参数的梯度),
原创
发布博客 2017.09.17 ·
10015 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

论文笔记understanding black-box predictions via influence functions

Purpose **To formalize the impact of a training point on a prediction, we ask the counterfactual: what would happen if we did not have this training point, or if the values of this training point w
原创
发布博客 2017.09.15 ·
7058 阅读 ·
3 点赞 ·
5 评论 ·
10 收藏

Why does policy gradiet method has high variance?

策略梯度方法 策略梯度方法中,目标函数是使得整个episode得到的reward的均值最大: maximizeθEπθ[∑t=0T−1γtrt]{\rm maximize}_{\theta}\; \mathbb{E}_{\pi_{\theta}}\left[\sum_{t=0}^{T-1}\gamma^t r_t\right] 由于: ∇θE[f(x)]=∇θ∫pθ(x)f(x)dx=∫pθ
原创
发布博客 2017.09.12 ·
522 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

神经网络中的优化算法

什么是优化算法? 给定一个具有参数θ的目标函数,我们想要找到一个w使得目标函数取得最大值或最小值。优化算法就是帮助我们找到这个θ的算法。 在神经网络中,目标函数f就是预测值与标签的误差,我们希望找到一个θ使得f最小。优化算法的种类一阶优化算法 它通过计算目标函数f关于参数θ的梯度(一阶偏导数)来最小化代价函数。常用的SGD、Adam、RMSProp等基于梯度的优化算法都属于一阶优化算法。
原创
发布博客 2017.09.12 ·
15424 阅读 ·
0 点赞 ·
0 评论 ·
20 收藏

逻辑回归、交叉熵、softmax

什么时候用softmax? softmax是一种归一化函数,用于将向量中元素的值都归一化0~1之间,并保持其加和为1。 公示表达为: 根据公式和图片可看出,前一层的激活值越大,经过softmax函数后的值也就越大,又因为softmax的所有输出加和为1,因此,常利用softmax层将激活值与概率实现映射。 多元分类(multi-class classification)中,每个样本只
原创
发布博客 2017.09.08 ·
2292 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

距离度量之马氏距离

马氏距离 用来度量一个样本点P与数据分布为D的集合的距离。 假设样本点为: 数据集分布的均值为: 协方差矩阵为S。 则这个样本点P与数据集合的马氏距离为: 马氏距离也可以衡量两个来自同一分布的样本x和y的相似性: 当样本集合的协方差矩阵是单位矩阵时,即样本的各个维度上的方差均为1.马氏距离就等于欧式距离相等。 当协方差矩阵
原创
发布博客 2017.09.02 ·
30812 阅读 ·
18 点赞 ·
4 评论 ·
57 收藏
加载更多