Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
public class Solution {
/**
* This program is used to calculate the number of points on a line on a plane.
* The algorithm is simple if there is no doubt on the definition of a line.
* A line can be defined using a single point and slope, one can obtain the analytic expression.
* So, the algorithm in the program is the following:
* 1. For a fixed point, calculate the maximum number of points on the same line with the
* fixed point.
* 2. run a loop with respect to each point.
*
* @param points -- an array of points on plane
* @return maximum number of points on a line
* @author Averill Zheng
* @version 2014-06-01
* @since JDK 1.7
*/
public int maxPoints(Point[] points) {
int numberOfPoints = 0;
int length = points.length;
for(int i = 0; i < length; ++i){
int max = maxPointsForFixedInterception(i, points);
numberOfPoints = (numberOfPoints < max) ? max : numberOfPoints;
}
return numberOfPoints;
}
private int maxPointsForFixedInterception(int i, Point[] points){
int max = 0, length = points.length;
Map<Double, Integer> slope = new HashMap<Double, Integer>();
if(length > 0){
max = 1;
if(length > 1){
//on vertical line
int number = 1;
for(int j = 0; j < length; ++j){
if(j != i){
double x_coor = points[j].x - points[i].x;
double y_coor = points[j].y - points[i].y;
//on vertical-line
if(x_coor == 0 && y_coor != 0){
++number;
max = (max < number)? number : max;
}
//repeat points
else if(x_coor == 0 && y_coor == 0){
++max;
}
else{
double slopeValue = y_coor / x_coor;
if(slope.containsKey(slopeValue)){
int num = slope.get(slopeValue) + 1;
max = (max < num) ? num : max;
slope.put(slopeValue, num);
}
else{
max = (max < 2) ? 2 : max;
slope.put(slopeValue, 2);
}
}
}
}
}
}
return max;
}
}