weixin_30905133的博客

私信 关注
weixin_30905133
码龄6年
  • 411,706
    被访问量
  • 暂无
    原创文章
  • 41,499
    作者排名
  • 53
    粉丝数量
  • 于 2015-08-28 加入CSDN
获得成就
  • 获得69次点赞
  • 内容获得0次评论
  • 获得407次收藏
荣誉勋章
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

AtCoder Grand Contest 038题解

好久没更了写点东西吧= =A 01Matrix简单构造左上角和右下角染成1其他染成0即可#include<bits/stdc++.h>#define ll long longusing namespace std;int a[1010][1010];int main(){ int n,m,A,B; cin>>n>>...
转载
140阅读
0评论
0点赞
发布博客于 2 年前

2019.9.16 csp-s模拟测试44 反思总结

虽然说好像没有什么写这个的价值OAO来了来了来写总结了,不能怨任何东西,就是自己垃圾x开题顺序又和主流背道而驰,先一头扎进了公认最迷的T2,瞎搞两个小时头铁出来,然后T1和T3爆炸。基础很差,全靠瞎蒙,能力不足,不如滚蛋。T1:D发现对于一个长为n的序列,从右端点开始往回和前面的数依次求gcd最多不超过logn个,原因是每次的gcd若缩小则一定除以2。那么从前...
转载
131阅读
0评论
0点赞
发布博客于 2 年前

2019.9.17 csp-s模拟测试45 反思总结

来了来了,垃圾二连。【指两次发博客】看了一下题就匆匆回去上课,在课上一边听课一边水oi,大概用1h40min的时间想完三道题。最后回到机房只剩下40min的时间敲代码,于是T1骗了70分就走了…这次蛮开心的,垃圾没有什么高要求,三道题我的想法都或多或少和正解沾边就非常愉快了。T1:kill(想这题的时候遭到了非人的噪音干扰……)倒是想到题解里区间连续的性质...
转载
138阅读
0评论
0点赞
发布博客于 2 年前

2019.8.14 NOIP模拟测试21 反思总结

模拟测试20的还没改完先咕着各种细节问题=错失190ptsT1大约三分钟搞出了式子,迅速码完,T2写了一半的时候怕最后被卡评测滚去交了,然后右端点没有初始化为n…但是这样还有80pts,而我后来还剩十分钟的时候写了个枚举用小数据把自己的80分代码卡掉了,后来交了个枚举60分…T2枚举的30pts和exgcd的20pts都爆炸了。T3还好,一眼数位DP也的确是数位DP...
转载
85阅读
0评论
0点赞
发布博客于 2 年前

洛谷P3168 [CQOI2015]任务查询系统

又是一道主席树板子题,喜闻乐见,然而我还是非常智障。之前写的题都是单点修改区间查询,这道题变成了区间修改单点查询,然后我一度懵逼…之后发现,是不是在蓝书上学树状数组的时候,就见过类似的转化?哦,成,差分。完美把区间修改变成单点修改,询问的时候只需要询问T[X]…(X是询问的时间点)。根据差分数组的定义,差分数组到某一位置的前缀和就是某一位置应有的统计数。然后比较智障的是调...
转载
90阅读
0评论
0点赞
发布博客于 2 年前

2019.8.13 NOIP模拟测试19 反思总结

最早写博客的一次∑听说等会儿还要考试【真就两天三考啊】,教练催我们写博客…大约是出题最友好的一次【虽然我还是炸了】,并且数据也非常水…忽视第三题的锅的话的确可以这么说。但是T3数据出锅就是你的错了虽然就算那样我考场上也写不对我这次考得挺神奇的,T1加个快读由80pts变成AC【再不学快读我就从这里跳下去】,T2写了个玄学nlog二分答案正确性爆炸但是给了我60分,T3暴...
转载
29阅读
0评论
0点赞
发布博客于 2 年前

洛谷P2468 [SDOI2010]粟粟的书架

来了来了,随便拽一道题写题解【大雾】最近发现自己基础奇差于是开始复习之前学过的东西,正好主席树我几乎完全没学会,然后打开洛谷试炼场…发现了这么一道二合一的题。这道题其实分成两个部分,前50%是一道题,后50%是另一道。观察数据范围的时候发现两种范围差别很大,似乎具有针对性,于是分开来想。再仔细一看,书页的范围p小于等于1000,似乎在暗示值域上可以搞什么幺蛾子。...
转载
56阅读
0评论
0点赞
发布博客于 2 年前

2019.8.12 NOIP模拟测试18 反思总结

写个博客总是符合要求的对吧回来以后第一次悄悄参加考试,昨天全程围观…然后喜提爆炸120分wwwwwwwwwT1用了全机房最慢的写法,导致改掉死循环T掉的一个点以后还是死活过不了最后一个点。T2全世界都会DP只有我没做过关路灯也现场推不出来我不如原地爆炸死得干脆一点还非要DFs骗个40分。T3浪费两个小时,考后不甘心地尝试理解题解和std然后死得如烟花一般惨淡。哇,墨...
转载
44阅读
0评论
0点赞
发布博客于 2 年前

2019.8.7 NOIP模拟测试14 反思总结

先扔代码调完自闭网络流了,新一轮考试前看看能不能赶完……考得极其爆炸,心态也极其爆炸,真的是认识到自己能力上的不足思维跑偏,代码能力差就这样吧,再努力努力,不行就AFOT1旋转子段:因为我和正解的绝缘性,我上来先选择想暴力,搞了搞把暴力优化到n2,行了,就交了大约是想正解的时候被奇怪的问题hack掉没有解决,于是被踢出了正解门外这边正...
转载
35阅读
0评论
0点赞
发布博客于 2 年前

2019.8.5 NOIP模拟测试13 反思总结【已更新完毕】

还没改完题,先留个坑。放一下AC了的代码,其他东西之后说…改完了 快下课了先扔代码跑了跑了 思路慢慢写来补完了[x刚刚才发现自己打错了标题这次考试挺爆炸的XD除了T3老老实实打暴力拿了52分,T1T2都爆了个位数因为我T1T2,这次没有打暴力…T1想到了80分的思路,快乐打炸。T2想到了循环节一类的处理,然后也爆炸。之后发现其实有人和...
转载
10阅读
0评论
0点赞
发布博客于 2 年前

P3303 [SDOI2013]淘金

题目描述小Z在玩一个叫做《淘金者》的游戏。游戏的世界是一个二维坐标。X轴、Y轴坐标范围均为1..N。初始的时候,所有的整数坐标点上均有一块金子,共N*N块。一阵风吹过,金子的位置发生了一些变化。细心的小Z发现,初始在(i,j)坐标处的金子会变到(f(i),fIj))坐标处。其中f(x)表示x各位数字的乘积,例如f(99)=81,f(12)=2,f(10)=0。如果金子变化...
转载
15阅读
0评论
0点赞
发布博客于 2 年前

2019.8.3 NOIP模拟测试12 反思总结【P3938 斐波那契,P3939 数颜色,P3940 分组】

【题解在下面】早上5:50,Gekoo同学来到机房并表态:“打暴力,打暴力就对了,打出来我就赢了。”我:深以为然。(这是个伏笔)据说hzoi的人还差两次考试【现在是一次了】就要重新分配机房,不知道我们几个的安排是什么样的,瑟瑟发抖。各种原因作用,心情有些微妙地一遍瞎画一边等着7:10考试开始。不怎么适合涂鸦的本,不怎么适合涂鸦的笔,不怎么适合涂鸦的心情。考...
转载
61阅读
0评论
0点赞
发布博客于 2 年前

2019.8.1 NOIP模拟测试11 反思总结

延迟了一天来补一个反思总结急匆匆赶回来考试,我们这边大家的状态都稍微有一点差,不过最后的成绩总体来看好像还不错XD其实这次拿分的大都是暴力【?】,除了某些专注于某道题的人以及远程爆踩我们的某学车神犇大约不粘题面也是可以的【越来越懒】T1:当时我甚至完全没有正解的思路,最后sort骗了四十分跑路【某种意义上还挺友好的?送你四十分】然后接下来的六十分,...
转载
37阅读
0评论
0点赞
发布博客于 2 年前

洛谷P2178 [NOI2015]品酒大会

题目描述一年一度的“幻影阁夏日品酒大会”隆重开幕了。大会包含品尝和趣味挑战 两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个奖项,吸引了众多品酒师参加。在大会的晚餐上,调酒师 Rainbow 调制了n杯鸡尾酒。这n杯鸡尾酒排成一行,其中第n杯酒 (1 ≤ i ≤ n) 被贴上了一个标签si​,每个标签都是26个小写 英文字母之一。设str(l,r...
转载
27阅读
0评论
0点赞
发布博客于 2 年前

2019.7.29 NOIP模拟测试10 反思总结【T2补全】

这次意外考得不错…但是并没有太多厉害的地方,因为我只是打满了暴力【还没去推T3】第一题折腾了一个小时,看了看时间先去写第二题了。第二题尝试了半天还是只写了三十分的暴力,然后看到第三题是期望,本能排斥,跑回去写第一题了。手画第一题的样例2,指着图片一点一点调试发现思路中间就错了,然后开了份新代码重写去了,好在原来那份里大部分东西都用得上。按数据点骗分,推出了y=2的性质,最后居然多...
转载
76阅读
0评论
0点赞
发布博客于 2 年前

插头DP智障操作合集

今天一共四道插头DP【其实都差不多】,智障错误出了不下五个:D来,让我好好数落我自己一下直接写代码注释里吧Eat the Trees#include<iostream>#include<cstdio>#include<cstring>using namespace std;int t,n,m;int a[1...
转载
29阅读
0评论
0点赞
发布博客于 2 年前

集训游记

来这里以后第一次写游记,好像也是oi生涯第一次写游记。博客我也少更,写杂谈的也就是初来乍到时候的第一篇。【那个好像算是自我介绍和心路记录?】这次集训来的这个地方显然比较特殊,不写点什么感觉浪费掉了。周围有人的游记已经写了一篇又一篇,我:哎呀今天想写,哎呀没调完题,哎呀,回宿舍了。今天考完试改了两道题,晚饭回来又听前辈讲了插头DP。刚刚写完考后博客,顺手再来一篇游记。衡中...
转载
38阅读
0评论
0点赞
发布博客于 2 年前

2019.7.27 NOIP模拟测试9 反思总结

先来整理题目T1题目大意:给出n个数字和一个质数作为模数,一个变量x初始值为1。进行m次操作,每次让x随机乘上n个数中的一个,问m次操作以后x的期望值。答案一定可以用分数表示,输出分子乘分母逆元的值。数学一直不好,期望这块更是似懂非懂。上来看了一眼数据范围和测试点提示,写了两行骗分走了。其实这个骗分我没看全也没理解对,阴差阳错碰对了一个点。正解是原根把矩阵乘法转化成...
转载
30阅读
0评论
0点赞
发布博客于 2 年前

bzoj3064/洛谷P4314 CPU监控【线段树】

好,长草博客被催更了【?】我感觉这题完全可以当作线段树3线段树2考加法和乘法标记的下放顺序,这道题更丧心病狂【?】很多人可能跟我一样,刚看到这道题秒出思路:打一个当前最大值一个历史最大值不就完事了吗实际上这样做会死得很惨。节点保留的信息可能来不及下传就被父节点更新掉,导致一部分信息被覆盖而丢失,这样就有可能查不到正确的历史最大值。比如历史最大值是由add更新的...
转载
42阅读
0评论
0点赞
发布博客于 2 年前

大约是个告别【草率极了】

啊…本来想写很多,不是,打算写很多,虽然并不是真的有那么多想写的其实大部分感受在第一篇游记里就写完了怎么说呢,今天脑子里一直有一个倒计时以精确到秒的程度运行着,告诉我这是这辈子在衡中,在这个机房,见到这些人的…现在是最后半小时。我挺喜欢这里的,说真的。我也挺喜欢这里的每个人的,说真的。大约是对于oi的感情让我从一开始就很喜欢每个oier,也大约是衡中给我的良好第...
转载
57阅读
0评论
0点赞
发布博客于 2 年前

2019.8.9 NOIP模拟测试15 反思总结

日常爆炸,考得一次比一次差XD可能还是被身体拖慢了学习的进度吧,虽然按理来说没有影响。大家听的我也听过,大家学的我也没有缺勤多少次。那么果然还是能力问题吗……?虽然不愿意承认,但显然就是这样。对于多次考试来说,身体原因状态原因都是一时的理由,而肉眼可见的下滑不能用这些去掩饰。今天还有考试,让我看看我是不是到此为止。T1建设城市:一眼组合数学插板法+容斥...
转载
35阅读
0评论
0点赞
发布博客于 2 年前

2019.8.10 NOIP模拟测试16 反思总结【基本更新完毕忽视咕咕咕】

一如既往先放代码,我还没开始改…改完T1滚过来了,先把T1T2的题解写了【颓博客啊】今天下午就要走了,没想到还有送行的饯别礼,真是欣喜万分【并没有】早上刚码完前面的总结,带着不怎么有希望的心情开始考试,居然一反前两次考试的没精神+早早做完题开始摸鱼,这次想了很久码了很久一直紧张到最后一刻挺开心的,虽然还是考得不太好,但好歹T2是为数不多考场AC的人【虽然讲...
转载
36阅读
0评论
0点赞
发布博客于 2 年前

2019.9.29 csp-s模拟测试55 反思总结

不咕咕咕是一种美德【大雾】头一次体会到爆肝写题解???这次考试我们没赶上,是后来掐着时间每个人自己考的。我最后的分数能拿到152…熟悉的一题AC两题爆炸。强烈吐槽出题人起名走心T1联:发现每一次加入一个区间的操作,只有区间的l或者r+1有可能成为答案。那么考虑能不能用这两个点代表一整个区间,维护全局最靠左的0在什么地方。把每个操作的l和r+1都存下来,...
转载
79阅读
0评论
0点赞
发布博客于 2 年前

2019.9.27 csp-s模拟测试53 反思总结

这个起名方式居然还有后续?!为什么起名不是连续的?!T1想了半天,搞出来了,结果数组开小【其实是没注意范围】。T2概率期望直接跳,后来翻回来写发现自己整个理解错了期望的含义【何】。T3错误想到赛道修建结果来了个错误贪心。关于T2破罐子破摔输出k居然骗了二十分这件事……T1u:一开始各种想偏,维护哪种值是奇数或偶数个,考虑每次操作影响哪些值变化…这些全都跑出...
转载
68阅读
0评论
0点赞
发布博客于 2 年前

2019.9.28 csp-s模拟测试54 反思总结

咕咕咕的冲动如此强烈xT1x:看完题目想了想,感觉把gcd不为1的强行放在一组,看作一个连通块,最后考虑连通块之间的组合方式就可以了。然后维护这个连通块可以写并查集可以连边跑dfs怎么着都行…然而我在处理数字分解质因数这里T掉了,原因是一个很显然的优化写法我基本没怎么写过。线性筛的时候记录每个数是被哪个质数标记过的,分解一个数的时候直接处理记录下来的质数就可以。...
转载
62阅读
0评论
0点赞
发布博客于 2 年前

查漏补缺·补丁计划

趁着神志清醒赶紧写一下。多次考试暴露出各种问题。新的知识点先不去搞了,最近多做一些不擅长的类型的题查漏补缺一下吧。唔,首先是比较考验思维的类型,我智商太低又刷题少不会什么套路,只能最近赶紧赶一下进度…  1.DP,各种DP。斜率优化,树形DP,区间DP,状压DP,计数DP,背包,插头DP…  2.概率和期望问题。  3.其它数学问题,包括一些知识点的补全。 ...
转载
58阅读
0评论
0点赞
发布博客于 2 年前

2019.9.26 csp-s模拟测试52 反思总结

刚刚写了一个小时的博客没了,浏览器自动刷新。一!个!小!时!鼠标键盘电脑哪个都不能摔,气死我了。垃圾选手T1T2没思路,T3倒是想出来得比较早,靠T3撑着分数。数据结构学傻选手,属实垃圾。T1平均数:一个序列的所有数如果减去x,那么平均数也会减去x。可以二分这个x,统计序列里平均数小于0的序列的个数,含义为原序列平均数小于x的序列的个数。最后统计值小于...
转载
59阅读
0评论
0点赞
发布博客于 2 年前

2019.9.24 csp-s模拟测试51(a) 反思总结

T1:还在头铁,顺便复习了一下lct【虽然这题用不上因为复杂度不对】头铁结束。虽然题目存在换根的操作,实际上并不用真的换根。2操作中求lca的时候只要考虑原树上root和x、y的lca以及x,y的lca,三个中取最深的就是现树上x和y的lca。关于u的子树整体操作需要分类讨论。如果现根不在原树上u的子树里,那么在新树上的目标子树与原树相同,直接操作。如果u就是root,...
转载
76阅读
0评论
0点赞
发布博客于 2 年前

2019.9.21 csp-s模拟测试49 反思总结

没赶上昨天的考试,不过我这种人考不考都没有多少提升吧。挺服气的一场考试,有生以来参加的最让人想笑的考试。T1:养花取模,区间询问最大值,有点套路化的预处理答案…难点也在预处理上。容易想到分块然后依次处理每个块的答案。然后考虑每个块内怎么处理每个k。发现对于一个模数k,最大值一定是每个k的倍数的前驱,即比k小的最大值、比k*2小的最大值,比k*3小的最大值…这些数取m...
转载
72阅读
0评论
0点赞
发布博客于 2 年前

2019.9.19 csp-s模拟测试47 反思总结

思路接近正解?都想到了?这都是借口呀。没有用的,往前走吧。T1:Emotional Flutter我的做法和题解不太一样,我把s放在最后考虑了。因为出发以后步幅是一样的,所以每一个黑条可以ban掉一段出发点。把黑条的左右边界%k存成区间,每个黑条可以存一个或者两个区间【跨越k这个边界】。然后像以前写区间覆盖的贪心一样按左端点排序,看看有没有长至少为s的空余。代码...
转载
80阅读
0评论
0点赞
发布博客于 2 年前

2019.9.20 csp-s模拟测试48 反思总结

头疼,不说废话了,祝大家rp++。T1:暴力枚举,n3。枚举两个串开始匹配的位置,每一次尽量修改。#include<iostream>#include<cstdio>using namespace std;int n,k,cnt,num,ans;char a[310],b[310];int main(){ ...
转载
59阅读
0评论
0点赞
发布博客于 2 年前

智障操作合集

再不写这个我真的会因为智商过低而死https://www.cnblogs.com/chloris/p/11260955.html插头dp智障操作合集7.28P4093 序列   CDQ分治优化DP    排序时b+l打成了b+1导致各种TLE   方案数的+1写在了ask查找的括号里面,导致ask(b[rr].pos)+1变 ...
转载
77阅读
0评论
0点赞
发布博客于 2 年前

2019.9.18 csp-s模拟测试46 反思总结

神志不清:回去休息(x)继续考试(√)非常爆炸的一次考试。看错题码完T1回去再看发现自己过于幼稚,T2读完题看着16mb的空间秒出正解然后逻辑出现致命失误100pts->0pts,T3看了一会题直接放弃,10pts最后有时间再说->没时间,下一个。还有什么好说的呢,略略。T1:Set曾经学完鸽巢原理【抽屉原理】以后还想过怎么考这个知识点的问题,...
转载
59阅读
0评论
0点赞
发布博客于 2 年前

1780 - 2019年我能变强组队训练赛第十八场

题目描述wls有一个钟表,当前钟表指向了某一个时间。又有一些很重要的时刻,wls想要在钟表上复现这些时间(并不需要依次复现)。我们可以顺时针转动秒针,也可以逆时针转动秒针,分针和时针都会随着秒针按规则转动,wls想知道秒针至少转动多少角度可以使每个时刻至少都会被访问一次。注意,时钟上的一种时针分针秒针的组合,可以代表两个不同的时间。输入第一行一个整数n代表有...
转载
63阅读
0评论
0点赞
发布博客于 2 年前

Light bulbs (树状数组模板题)

There areNlight bulbs indexed from00toN−1. Initially, all of them are off.A FLIP operation switches the state of a contiguous subset of bulbs.FLIP(L, R)means to flip all bulbsxsuch that...
转载
69阅读
0评论
0点赞
发布博客于 2 年前

unordered_map的用法

原博客:https://www.cnblogs.com/aaronzlq/p/3612629.htmlC++11引入了很多新特性,比如auto ,比如 for(type v : container)等。数据结构方面最抢眼的应该是引入了unordered_set和unordered_map。比起普通的set 和 map,其内部不再是红黑树排关键字了,而是用的哈系表;来提高查找效率。...
转载
103阅读
0评论
0点赞
发布博客于 2 年前

Happy Tree Friends(一个在树上搜索的题)

icpc上的题:12669题解:我的题解是按照叶子链重小到大删叶子链,直到叶子链个数不大于k,每次删叶子链时记录删的节点权值和并且把答案减去这些删的权值和,最后还剩下的ans就是答案不过这个题输入的是无向边,所以你得重新建树问题 I: Happy Tree Friends时间限制: 1 Sec内存限制: 128 MB提交: 41解决: 14[提交] [状态] ...
转载
24阅读
0评论
0点赞
发布博客于 2 年前

快读及快输出

//输入template<class T>inline void read(T&x){ T ans=0,f=1; char ch=getchar(); while(ch>'9'||ch<'0') { if(ch=='-') f=-1; ch...
转载
39阅读
0评论
0点赞
发布博客于 2 年前

权值线段树模板题

array Time Limit: 1500ms Memory Limit: 256M Description You are given an array . Initially, each element of the array is unique.Moreover, there are instructions. Each instruction is in one of th...
转载
50阅读
0评论
0点赞
发布博客于 2 年前

欧拉函数,讲述一个数n以及算出比n小的并且与n互质的数的个数,还可以欧拉筛打表每一个小于n的互质数的个数...

#include <bits/stdc++.h>using namespace std;typedef long long ll;int k;int euler(int n){//计算比n小的且与n互质的数的个数 int m=int(sqrt(n+0.5)); int ans=n; for(int i=2;i<=m;++...
转载
76阅读
0评论
0点赞
发布博客于 2 年前

区间素数筛

题目描述A positive integer is called a "prime-factor prime" when the number of its prime factors is prime. For example, 12 is a prime-factor prime because the number of prime factors of 12=2×2×3 is...
转载
20阅读
0评论
0点赞
发布博客于 2 年前

矩阵快速幂模板题

题目描述God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him that some sequence of eating will make them poisonous.Every hour, God Water will eat one...
转载
24阅读
0评论
0点赞
发布博客于 2 年前

后缀自动机

题目链接:http://icpc.upc.edu.cn/problem.php?cid=1828&pid=7#include<bits/stdc++.h>using namespace std;typedef long long ll;const int maxn = 1e5 + 5;char str[maxn];int hou[maxn ...
转载
12阅读
0评论
0点赞
发布博客于 2 年前

矩阵快速幂模板

struct Mat{ LL m[101][101];};//存储结构体Mat a,e; //a是输入的矩阵,e是输出的矩阵Mat Mul(Mat x,Mat y){ Mat c; for(int i=1;i<=n;++i) for(int j=1;j<=n;++j) c.m[i...
转载
9阅读
0评论
0点赞
发布博客于 2 年前

常见的代码错误情况

(1),把Max赋了一个最大值或者把Min赋了一个最小值;转载于:https://www.cnblogs.com/lengsong/p/11296059.html
转载
141阅读
0评论
0点赞
发布博客于 2 年前

十进制快速幂

给你一个大数n,求2的n次幂;由于n很大,用普通的快速幂已经不能够很快的算出了,因为不好判断奇偶以及除2这些,不过不过用十进制快速幂求普通的ll及int型数也很快;#include<bits/stdc++.h>using namespace std;typedef long long ll;const int maxn=1e4+5;int mod=...
转载
12阅读
0评论
0点赞
发布博客于 2 年前

用唯一分解定理求m/n

用唯一分解定理求m/n,保证m能够被n整除;这其中用到了素数筛以及快速幂#include<bits/stdc++.h>using namespace std;const int maxn=1e4+5;bool vis[maxn];int prime[maxn],cnt=0,e[maxn];void getprime(){ for(in...
转载
18阅读
0评论
0点赞
发布博客于 2 年前

map用法

#include<bits/stdc++.h>using namespace std;struct node{ int x,y; bool operator <(const node &temp)const{ if(x<temp.x)return true; return false;...
转载
22阅读
0评论
0点赞
发布博客于 2 年前

Commons组件实现文件上传与下载

一、文件上传所需jar包首先是commons-fileupload.jar包其次是commons-IO.jar包前者的使用依赖后者,两者缺一不可实现前台要求在前台提交的form表单请求方式必须为:post,编码类型需设置为:multipart/form-data后台实现 protected void doGet(HttpServletRequest reques...
转载
60阅读
0评论
0点赞
发布博客于 2 年前

git拉取代码的时候提示Authentication failed for []

解决办法,用管理员身份打开git命令行,执行 git config --global credential.helper store重新clone的时候会提示让输入用户名,然后弹出框让输入密码,就可以了转载于:https://www.cnblogs.com/yanghaifeng/p/11548067.html...
转载
326阅读
0评论
0点赞
发布博客于 2 年前

解决push报错 src refspec vue_develop does not match any.

解决办法:git push -f origin HEAD:你的分支名转载于:https://www.cnblogs.com/yanghaifeng/p/11549316.html
转载
48阅读
0评论
0点赞
发布博客于 2 年前

springboot vue前后端分离 跨跨域配置

public class CustomCorsFilter extends OncePerRequestFilter { @Override protected void doFilterInternal(HttpServletRequest request, HttpServletResponse response, FilterChain filterCh...
转载
55阅读
0评论
0点赞
发布博客于 2 年前

java.lang.NoSuchMethodError 介绍

1、 错误内容:java.lang.NoSuchMethodError: com.Boot: method <init>()V not found此提示内容指,com.Boot没有参数为空的构造函数。提示中指明了异常所在的类和对应的函数。2、 java文档: 说的很清楚了,是类的变化不兼容导致的异常。通俗的说法是,调用方使用的类定义和加载的类定义不一样,加载的...
转载
76阅读
0评论
0点赞
发布博客于 2 年前

问题记录

1、Spring 注入异常:non-compatible bean definition of same name and class一个接口有多个实现类,移动包结构,重新部署的时候没有mvn clean 会出现这个case。2、 feign 异常:Service id not legal hostname@FeignClient注解name的值包含非法字符,...
转载
57阅读
0评论
0点赞
发布博客于 2 年前

控制反转解读

一个对象应该尽可能减少对其他对象的了解。一个对象需要依赖其他对象,但不应该了解其他对象的实现。一个对象被其他对象依赖,但不应该把自己的实现暴露出去。任何一个对象都不应该直接控制其他对象的产生和维持,对象之间只是简单的引用,面向接口的引用。所有的对象各司其职,把掌控全局的权利交给抽象。天行有常,不为尧存,不为桀亡。冥冥之中自有大道。依赖注入做的就是这件事,控制反转。...
转载
52阅读
0评论
0点赞
发布博客于 2 年前

Spring 配置Swagger

swagger配置示例:其中,titile的内容会显示在swagger页面顶部,RequestHandlerSelectors.basePackage和PathSelectors.any从包结构和api路径两个方面筛选要显示的api接口@Component@EnableSwagger2public class SwaggerConfig { ...
转载
112阅读
0评论
0点赞
发布博客于 2 年前

吊书袋子与装逼单词

1、Web Service :指使用开放通信协议开发的应用组件。例如spring http application2、JAX-RS : Java API for Resultful Web Service。 resultful风格的web service。3、 SOA : Server Oriented Architecture4、SLF4J : Simple Log...
转载
57阅读
0评论
0点赞
发布博客于 2 年前

Postman通过脚本设置请求的cookie

关于postman前置脚本的详细介绍:https://learning.getpostman.com/docs/postman/scripts/pre_request_scripts/环境变量是key 、value 键值对,在api path上可以通过key引用变量,形式是{{key}}pre-request script 前置脚本,每次发送http请求前,都会调用该脚本...
转载
208阅读
0评论
0点赞
发布博客于 2 年前

apache server 介绍和安装配置WordPress

概念介绍1、apache server 是一个流行的http服务器。对应的可执行软件是httpd 和 apachectl。httpd提供http服务,apachectl控制httpd的执行。2、CGI 即 Common Gateway Interface, 是apache server 上程序和http交互的协议,在多种语言上都有实现,所以你在apache服务器上可以运行p...
转载
57阅读
0评论
0点赞
发布博客于 2 年前

生成rsa公钥秘钥、并配置git ssh 链接

1、下载安装git2、执行命令: ssh-keygen -t rsa -C "name@email.com" windows 使用git shell 执行3、查看rsa 秘钥和公钥进入用户目录下的.ssh目录,unix类系统执行此命令:cd ~/.ssh/ && ls以 rsa.pub结尾的就是rsa公钥4、配置...
转载
31阅读
0评论
0点赞
发布博客于 2 年前

Conv2d常设置参数意义-继续扩展

记录下一些常用设置:1.下采样当设置为:nn.Conv2d(nc,ndf,4,2,1,bias=False)kernel_size = 4, stride = 2, padding = 1,就是将特征图宽高缩小一倍的意思,就比如是将256*256 -> 128*128nn.Conv2d(3, num_init_features, kernel_siz...
转载
532阅读
0评论
0点赞
发布博客于 2 年前

判断输出的浮点数的结果是否等价于其整数-一个数是否为2的幂次

比如想要知道一个数是否为2的幂次,运行为:import mathpower1 = math.log(256, 2)power2 = math.log(224, 2)print(power1) # 8.0print(power2) # 7.807354922057604assert int(power1) == power1, 'input has to...
转载
48阅读
0评论
0点赞
发布博客于 2 年前

tqdm学习-一个快速,可扩展的Python和CLI进度条

参考:https://pypi.org/project/tqdm/1.安装:(base) userdeMacBook-Pro:~ user$ conda activate deeplearning(deeplearning) userdeMacBook-Pro:~ user$ conda install -c conda-forge tqdm Collecting...
转载
294阅读
0评论
0点赞
发布博客于 2 年前

pytorch torch.backends.cudnn设置作用

cuDNN使用非确定性算法,并且可以使用torch.backends.cudnn.enabled = False来进行禁用如果设置为torch.backends.cudnn.enabled =True,说明设置为使用使用非确定性算法然后再设置:torch.backends.cudnn.benchmark = true那么cuDNN使用的非确定性算法就会自动寻找最适...
转载
1112阅读
0评论
1点赞
发布博客于 2 年前

pytorch visdom可视化工具学习—3-命令行操作使用经验

在使用过程中一直以为要在哪个指定的environment下(即参数env)绘制内容,就必须在使用时声明比如如果不声明,默认的就是在'main'环境下,端口为8097:viz = visdom.Visdom()这个时候如果想要在另一个环境,比如'mydata',其实并不用重新声明下面的语句:viz = visdom.Visdom(env='mydata')...
转载
164阅读
0评论
0点赞
发布博客于 2 年前

pytorch ImageFolder的覆写

在为数据分类训练分类器的时候,比如猫狗分类时,我们经常会使用pytorch的ImageFolder:CLASS torchvision.datasets.ImageFolder(root, transform=None, target_transform=None, loader=<function default_loader>, is_valid_file=Non...
转载
155阅读
0评论
1点赞
发布博客于 2 年前

FactorVAE论文学习-1

Disentangling by Factorising 我们定义和解决了从变量的独立因素生成的数据的解耦表征的无监督学习问题。我们提出了FactorVAE方法,通过鼓励表征的分布因素化且在维度上独立来解耦。我们展示了其通过在解耦和重构质量之间提供一个更好的权衡(trade-off)来实现优于β-VAE的效果。而且我们着重强调了通常使用的解耦度量...
转载
200阅读
0评论
0点赞
发布博客于 2 年前

Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化

Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性,但是在文献中都没有很好地学习到。在该论文中,我们提出了一种创新的基于生成对抗网络的方法。该方法对固有的特定目标特性和根据消逝时间的特定年龄面部更改分别...
转载
304阅读
0评论
0点赞
发布博客于 2 年前

异常检测-基于孤立森林算法Isolation-based Anomaly Detection-3-例子

参考:https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py代码:print(__doc__)import numpy as npimpo...
转载
205阅读
0评论
0点赞
发布博客于 2 年前

异常检测-基于孤立森林算法Isolation-based Anomaly Detection-2-实现

参考https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fitclass sklearn.ensemble.IsolationForest(n_estimators=100, max_s...
转载
196阅读
0评论
0点赞
发布博客于 2 年前

KL散度

参考https://zhuanlan.zhihu.com/p/224647601.KL散度为一维高斯分布时:画图表示式子证明两者的升降关系:import numpy as npimport matplotlib.pyplot as pltx = np.linspace(0.5, 2, 100)y = -np.log(x) + x*x/2 - 0...
转载
31阅读
0评论
0点赞
发布博客于 2 年前

异常检测-基于孤立森林算法Isolation-based Anomaly Detection-1-论文学习

论文http://202.119.32.195/cache/10/03/cs.nju.edu.cn/da2d9bef3c4fd7d2d8c33947231d9708/tkdd11.pdf1. INTRODUCTION 异常是与正常样例有着不同的数据特性的数据模式。检测异常的能力具有重要的相关性,异常经常...
转载
297阅读
0评论
0点赞
发布博客于 2 年前

VAE论文学习

intractable棘手的,难处理的 posterior distributions后验分布 directed probabilistic有向概率approximate inference近似推理 multivariate Gaussian多元高斯 diagonal对角 maximum likelihood极大似然参考:https://blog.csdn....
转载
128阅读
0评论
0点赞
发布博客于 2 年前

pytorch 想在一个优化器中设置多个网络参数的写法

使用tertools.chain将参数链接起来即可import itertools...self.optimizer = optim.Adam(itertools.chain(self.encoder.parameters(), self.decoder.parameters()), lr=self.opt.lr, betas=(self.opt.beta1, 0.999...
转载
837阅读
0评论
2点赞
发布博客于 2 年前

pytorch 计算图像数据集的均值和方差

在使用 torchvision.transforms进行数据处理时我们经常进行的操作是:transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225))前面的(0.485,0.456,0.406)表示均值,分别对应的是RGB三个通道;后面的(0.229,0.224,0.225)则表示的是方差这上面的均值和方差...
转载
1236阅读
0评论
0点赞
发布博客于 2 年前

pytorch torch.nn.functional实现插值和上采样

interpolatetorch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None)根据给定的size或scale_factor参数来对输入进行下/上采样使用的插值算法取决于参数mode的设置支持目前的tempor...
转载
670阅读
0评论
0点赞
发布博客于 2 年前

python中的修饰符@的作用

1.一层修饰符1)简单版,编译即实现在一个函数上面添加修饰符 @另一个函数名 的作用是将这个修饰符下面的函数作为该修饰符函数的参数传入,作用可以有比如你想要在函数前面添加记录时间的代码,这样每个函数调用时就能够知道是什么时候调用的,但是你不想手动地去给每个函数添加,那么就能够使用该修饰符实现这样的功能,下面举例说明:#coding=UTF-8import time...
转载
25阅读
0评论
0点赞
发布博客于 2 年前

pytorch 不使用转置卷积来实现上采样

上采样(upsampling)一般包括2种方式:Resize,如双线性插值直接缩放,类似于图像缩放,概念可见最邻近插值算法和双线性插值算法——图像缩放Deconvolution,也叫Transposed Convolution,可见逆卷积的详细解释ConvTranspose2d(fractionally-strided convolutions)第二种方法如何用pyt...
转载
167阅读
0评论
0点赞
发布博客于 2 年前

pytorch标准化后的图像数据如果反标准化保存

1.数据处理代码utils.py:1)# coding:utf-8import osimport torch.nn as nnimport numpy as npimport scipy.miscimport imageioimport matplotlib.pyplot as pltimport torchdef tensor2im(in...
转载
317阅读
0评论
1点赞
发布博客于 2 年前

pytorch Containers的Module部分

参考:https://pytorch.org/docs/stable/nn.htmlContainersModuleCLASS torch.nn.Module所有神经网络模块的基类你定义的模型必须是该类的子类,即继承与该类模块也能包含其他模块,允许它们在树状结构中筑巢。您可以将子模块指定为常规属性:import torch.nn as nni...
转载
47阅读
0评论
0点赞
发布博客于 2 年前

GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training-1-论文学习

通过对抗训练实现半监督的异常检测Abstract 异常检测在计算机视觉中是一个经典的问题,即从异常中确定正常,但是由于其他类(即异常类)的样本数量不足,所以数据集主要基于一个类(即正常类)。虽然该问题能够当成一个监督学习问题来处理,一个更有挑战性的问题是检测未知/不可见的异常情况,这将我们带入一个单类、半监督学习范式的空间。提出了一种新的异常...
转载
537阅读
0评论
0点赞
发布博客于 2 年前

pytorch torch.nn 实现上采样——nn.Upsample

Vision layers1)UpsampleCLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)上采样一个给定的多通道的 1D (temporal,如向量数据), 2D (spatial,如jpg、png等图像数据) or 3D (volum...
转载
870阅读
0评论
0点赞
发布博客于 2 年前

pytorch模型存储的两种方式

1.保存整个网络结构信息和模型参数信息:torch.save(model_object, './model.pth')直接加载即可使用:model = torch.load('./model.pth')2.只保存网络的模型参数-推荐使用torch.save(model_object.state_dict(), './params.pth')...
转载
49阅读
0评论
0点赞
发布博客于 2 年前

pytorch对模型参数初始化

1.使用apply()举例说明:Encoder :设计的编码其模型weights_init(): 用来初始化模型model.apply():实现初始化# coding:utf-8from torch import nndef weights_init(mod): """设计初始化函数""" classname=mod.__c...
转载
106阅读
0评论
0点赞
发布博客于 2 年前

DEX-6-caffe模型转成pytorch模型办法

在python2.7环境下文件下载位置:https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/1.可视化模型文件prototxt1)在线可视化网址为:https://ethereon.github.io/netscope/#/editor将prototxt文件的内容复制到左边,然后按shift-enter键即可:...
转载
37阅读
0评论
0点赞
发布博客于 2 年前

pytorch设置多GPU运行的方法

1.DataParallel layers (multi-GPU, distributed)1)DataParallelCLASS torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)实现模块级别的数据并行该容器是通过在batch维度上将输入分到指定的device中...
转载
321阅读
0评论
0点赞
发布博客于 2 年前

深度学习:21天实战caffe学习资源-4-环境安装

使用anaconda3环境下的python2.7, 机器macos mojave 10.141.安装Xcode首先现在app store中安装Xcode:不然会有” framework not found vecLib “的问题出现2.相应包安装1.首先要安装homebrew包管理工具,在终端运行下面命令:/usr/bin/ruby -e "$...
转载
56阅读
0评论
0点赞
发布博客于 2 年前

python的argparse模块parse_known_args()方法的使用

parse_known_args()方法的用处就是有些时候,你的选项配置可能不会在一个函数或包中调用完成在很多使用,我们可能会需要根据一些输入的选项,比如在深度学习中,我们可能会根据传入的模型设置--model来决定我们调用的是那个模型代码,然后在该模型中还会有一部分的选项设置那么这时候就会出现一种情况就是运行命令中会传入所有需要设置的选项值,但是有时候仅获取到基本设置时可能要进...
转载
66阅读
0评论
0点赞
发布博客于 2 年前

pytorch nn.Sequential()动态添加方法

之前我们使用nn.Sequential()都是直接写死的,就如下所示:# Example of using Sequentialmodel = nn.Sequential( nn.Conv2d(1,20,5), nn.ReLU(), nn.Conv2d(20,64,5), nn.ReLU(...
转载
1408阅读
0评论
1点赞
发布博客于 2 年前

pytorch常用的padding函数

1)ReflectionPad2dCLASS torch.nn.ReflectionPad2d(padding)使用输入边界的反射来填充输入tensor对于N维的填充,使用torch.nn.functional.pad()参数:padding(int, tuple):指定填充的大小。如果是一个整数值a,则所有边界都使用相同的填充数,等价于输入(a,a...
转载
480阅读
0评论
0点赞
发布博客于 2 年前

functools.partial偏函数的使用

https://docs.python.org/3.6/library/functools.html从名字可以看出,该函数的作用就是部分使用某个函数,即冻结住某个函数的某些参数,让它们保证为某个值,并生成一个可调用的新函数对象,这样你就能够直接调用该新对象,并且仅用使用很少的参数该参数源码:def partial(func, *args, **keywords): ...
转载
23阅读
0评论
0点赞
发布博客于 2 年前

pytorch求范数函数——torch.norm

torch.norm(input, p='fro', dim=None, keepdim=False, out=None, dtype=None)返回所给tensor的矩阵范数或向量范数参数:input:输入tensorp (int, float, inf, -inf, 'fro', 'nuc', optional):范数计算中的幂指数值。默认为'fro...
转载
3151阅读
0评论
1点赞
发布博客于 2 年前

pytorch transforms.Lambda的使用

当你想要对图像设置transforms策略时,如:from torchvision import transforms as Tnormalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])data_transforms = { 'train': T.Compose([ ...
转载
1229阅读
0评论
0点赞
发布博客于 2 年前

mtcnn论文学习

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 使用多任务级联卷积网络连接人脸检测和对齐摘要-因为可能有着多种姿势、照明和遮挡(various poses, illuminations and occlusions),在非限制环境...
转载
65阅读
0评论
0点赞
发布博客于 2 年前

怎么仅加载一部分内容的预训练模型参数

在pytorch中提供了很多预训练好的模型,以分类为例,基本上都是用ImageNet数据集来训练的,分为1000类。但是很多时候我们要实现的分类项目可能并没有这么简单,比如我们可能并不仅仅只是实现单分类,可能想实现双分类或者是多分类,这个时候就需要对模型进行一定的修改修改的同时还希望该修改后的模型中与预训练模型相同的部分仍能够使用预训练的参数来初始化,这时候应该怎么做?...
转载
641阅读
0评论
0点赞
发布博客于 2 年前

IMDB-WIKI – 500k+ face images with age and gender labels论文学习

DEX: Deep EXpectation of apparent age from a single image这个论文我们使用深度学习解决了在静态人脸图像中面部年龄的估计。我们的卷积神经网络使用了VGG-16结构,并在用于图像分类的ImageNet的数据集上预训练。除此之外,由于面部年龄的注释图像数量的限制,我们探究了微调带有可用年龄的爬取的网络人脸图片的好处。我们从IMDB和W...
转载
119阅读
0评论
0点赞
发布博客于 2 年前

python动态导入模块——importlib

当在写代码时,我们希望能够根据传入的选项设置,如args.model来确定要导入使用的是哪个model.py文件,而不是一股脑地导入这种时候就需要用上python的动态导入模块比如此时文件结构为:├── models│ ├── __init__.py│ ├── cycle_gan_model.py│ └── pix2pix_model.py└─...
转载
16阅读
0评论
0点赞
发布博客于 2 年前

如何设置pycharm中使用的环境为本地的环境,而不用重新安装包

Pycharm的两种环境配置1.新建一个虚拟环境一开始使用pycharm创建project的时候,点击创建 create new project:然后就会弹出下面的窗口,如果我们选择的是上面的选项,那么进行的就是一个创建了一个虚拟机环境的操作,就是在该project下会生成一个venv文件夹,下面存放你使用的环境以及相应的模版:点击create后生成project...
转载
474阅读
0评论
0点赞
发布博客于 2 年前

python-learning-第二季-数据库编程

https://www.bjsxt.com/down/8468.html代码实现:#coding:utf-8#导入模块import sqlite3#创建connect连接con = sqlite3.connect('./sqlitedb/demo.db')print(con) #查看连接是否成功生成,<sqlite3.Co...
转载
21阅读
0评论
0点赞
发布博客于 2 年前

mac中matplotlib不支持中文的解决办法

参考:https://blog.csdn.net/kaizei_pao/article/details/80795377首先查看matplotlib已加载的字体:import matplotlib.font_managera = sorted([f.name for f in matplotlib.font_manager.fontManager.ttflist])...
转载
75阅读
0评论
0点赞
发布博客于 2 年前