【BZOJ3529】【SDOI2014】 数表

本文介绍了一种计算特定数表中元素之和的算法。该数表由两维度构成,每个元素值为能同时整除行号和列号的所有自然数之和。文章详细解析了如何通过数学反演和树状数组技术高效地解决此问题,并给出了具体实现步骤。
部署运行你感兴趣的模型镜像

Time Limit: 10 Sec Memory Limit: 512 MB

Description

​ 有一张\(n×m\)的数表,其第i行第j列(\(,1 \le i \leq n,1 \le j \le m\))的数值为
能同时整除\(i\)\(j\)的所有自然数之和。给定\(a\),计算数表中不大于\(a\)的数之和。

Input

​ 输入包含多组数据。
​ 输入的第一行一个整数\(Q\)表示测试点内的数据组数,接下来Q行,每行三个整数\(,,n,m,a\)(\(|a| < =10^9\))描述一组数据。

Output

​ 对每组数据,输出一行一个整数,表示答案模\(2^{31}\)的值。

Sample Input

​ 2
​ 4 4 3
​ 10 10 5

Sample Output

​ 20
​ 148

HINT

\(1 \le n,m \le 10^5 \\ 1 \le Q \le 2×10^4\)

Solution

​ 先忽略\(a\)的条件。

​ 令\(f(n)\)表示\(n\)的所有约数之和, \(sum(x)\)表示\(且x=gcd(i,j),1\le i \le n且1\le j \le m\)的数对数量.

​ 按照之前的反演,\(sum(x)=\sum\limits_{x|d}\mu(\frac dx)\lfloor\frac nd\rfloor\lfloor\frac md\rfloor=\sum\)
\[ \begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_{d|i且d|j}d\\ &=\sum_{i=1}^n\sum_{j=1}^mf(gcd(i,j))\\ &=\sum_{d=1}^{min(n,m)}f(d)sum(d)\\ &=\sum_{d=1}^{min(n,m)}f(d)\sum_{x|d}\mu(\frac dx)\lfloor\frac nd\rfloor\lfloor\frac md\rfloor\\ &=\sum_{d=1}^{min(n,m)}f(d)\sum_{k=1}^{\lfloor min(n,m)/d\rfloor}\mu(\frac {kx}x)\lfloor\frac n{kx}\rfloor\lfloor\frac m{kx}\rfloor\\ &=\sum_{T=1}^{min(n,m)}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\sum_{d|T}f(d)\mu(\frac Td)\\ &=\sum_{T=1}^{min(n,m)}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor g(T) &令g(x)=\sum_{d|x}f(d)\mu(\frac xd) \end{aligned} \]

​ 其实\(g(x)\)是可以暴力求解的...因为\(x\)的因数个数不是很多。但是我们不能直接算完,因为有\(a\)的限制。由此要引入树状数组。

​ 回头看\(a\)的条件,从第三行等式来看,只有\(d\leq a\)\(f(d)\)才能有贡献。

​ 我们用一个树状数组来维护\(g(x)\)的前缀和,那么对于询问,按照\(a\)排序,将所有\(x\le a\)\(f(x)\),枚举\(x|y\)\(y\),更新\(g(y)+=f(x)\mu(\frac yx)\)

​ 这样按照分块的套路求解\(ans\)即可.

f函数求解

\(f(x)=\sum\limits_{d|x}d\)

\(f(x)\)是积性函数,可以用线性筛求解:

​ (1) \(x\)是质数时,\(f(x)=1+x\)

​ (2)循环\(i\)\(p\)筛到\(x\)\(x\)=\(p*i\).

​ 若\(i\nmid p\),则\(i\)\(p\)互质,那么\(f(x)=f(i)f(p)=f(i)*(p+1)\).

​ 若\(i|p\),记\(i\)去除所有\(p\)因子后的数为\(a\). 则\(f(x)=f(i)*p+f(a)\).

​ 记\(i=p_1^{q_1}p_2^{q_2}...p_k^{q_k}\),则\(x=p_1^{q_1}p_2^{q_2}...p_{loc}^{q_{loc}+1}...p_k^{q_k}\)\(a=p_1^{q_1}..p_{loc-1}^{q_{loc-1}}p_{loc+1}^{q_{loc}+1}...p_k^{q_k}\).不严谨地,这里\(p_{loc}\)\(q_{loc}\)分别代表的是\(p\),与\(p\)在质因数分解中的指数。
\[ \begin{aligned} f(i)*p&=(1+p1+...+p1^{q1})...(1+p_{loc}+...+p_{loc}^{q_{loc}})...(1+p_k+...+p_k^{q_k})*p\\ &=(p_{loc}+p_{loc}^2+..+p_{loc}^{q_{loc}+1})f(a)\\ \therefore f(i)*p&+f(a)=(1+p_{loc}+p_{loc}^2+...+p_{loc}^{q_{loc}+1})f(a)=f(x) \end{aligned} \]

转载于:https://www.cnblogs.com/RogerDTZ/p/8227334.html

您可能感兴趣的与本文相关的镜像

Linly-Talker

Linly-Talker

AI应用

Linly-Talker是一款创新的数字人对话系统,它融合了最新的人工智能技术,包括大型语言模型(LLM)、自动语音识别(ASR)、文本到语音转换(TTS)和语音克隆技术

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值