SPOJ FIBOSUM && FIBOSUM2

Fibonacci数列定义为

$$f_n = f_{n-1}+f_{n-2}, \text{以及初值}f_0=0, f_1=1.$$

本文之讨论,皆在模$10^9+7$意义下。

 

FIBOSUM

给定$0 \le x \le y \le 10^9$,求$\sum_{i=x}^y f_i$。

解:

令$s_n = \sum_{i=1}^n f_i$,则

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} s_{n-1} \\ f_n \\ f_{n-1} \end{bmatrix} = \begin{bmatrix} s_n \\ f_{n+1} \\ f_n \end{bmatrix}$$

于是$\sum_{i=x}^y f_i = s_y - s_{x-1}$,可用矩阵快速幂$O(\log x + \log y)$解决。

 

FIBOSUM2

给定$0 \le c < k \le 2^{15}$,以及$0 < n \le 10^{18}$,求

$$\sum_{i=1}^n f_{ki+c}.$$

解:

$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$M \begin{bmatrix} f_n \\ f_{n-1} \end{bmatrix} = \begin{bmatrix} f_{n+1} \\ f_n \end{bmatrix}$$

$$M^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix}$$

于是$(M^n)_{01} = f_n$,

$$\left( \sum_{i=x}^y M^i \right)_{01} = \sum_{i=x}^y f_i$$

进而

$$ \left( \sum_{i=1}^n M^{ki+c} \right)_{01} = \sum_{i=1}^n f_{ki+c}$$

借此我们令

$$A = \begin{bmatrix} I & M^k \\ 0 & M^k \end{bmatrix}$$

可以验证

$$A^n \begin{bmatrix} 0 \\ M^c \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n M^{ki+c} \\ M^{kn+c} \end{bmatrix}$$

可以利用矩阵快速幂在$O(4^3 \log n)$求得。

 

这样复杂度太高,我们继续优化。

设$f(\lambda) = \det (\lambda I - A)$是矩阵$A$的特征多项式,即

$$f(\lambda) = \lambda^4 - a_1 \lambda^3 - a_2 \lambda^2 - a_3 \lambda - a_4. $$

其中$a_1 = f_{k+1}+f_{k-1}+2, a_2 = -(f_{k+1}f_{k-1}-f_k^2+2(f_{k+1}+f_{k-1})+1), a_3 = 2(f_{k+1}f_{k-1}-f_kf_k)+f_{k+1}+f_{k-1}, a_4 = f_k^2-f_{k+1}f_{k-1}.$

由Hamilton-Cayley定理,$f(A) = 0$,即

$$A^4 = a_1 A^3 + a_2 A^2 + a_3 A + a_4 I.$$

于是我们可以利用多项式乘法,把$A^n$化为$A$的三次多项式。

假设$A^n = c_3 A^3 + c_2 A^2 + c_1 A^1 + c_4$,并令$s_n = \sum_{i=1}^n f_{ki+c}$,有

$$s_n = \sum_{i=0}^3 c_is_i = c_1s_1+c_2s_2+c_3s_3$$

时间复杂度$O(4^2 \log n)$。

 

我们仍可继续优化,考虑到Fibonacci数列在模$10^9+7$下的循环节是$2 \times 10^9+16$,并且

$$\sum_{i=1}^{2 \times 10^9+16} f_{ki+c} \equiv \sum_{i=1}^{2 \times 10^9+16} f_{i} \equiv 0 \pmod {10^9+7}.$$

于是

$$s_n \equiv s_{n \bmod (2 \times 10^9+16)}.$$

则可以把$n$限制到 int 范围内。

 

P.S. 可构造3阶矩阵。令

$$ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & f_{k+1} & f_k \\ 0 & f_k & f_{k-1}  \end{bmatrix}. $$

$$ A^n \begin{bmatrix} 0 \\ f_{k+c} \\ f_{k+c-1} \end{bmatrix} = \begin{bmatrix} s_n \\ f_{k(n+1)+c} \\ f_{k(n+1)+c-1} \end{bmatrix}. $$

其特征函数$f(\lambda) = \lambda^3 - a_1 \lambda^2 - a_2 \lambda - a_3$,其中 $a_1 = f_{k+1}+f_{k-1}+1, a_2 = f_k^2-f_{k+1}f_{k-1}-f_{k+1}-f_{k-1}, a_3 = f_{k+1}f_{k-1}-f_k^2$。时间复杂度$O(3^2 \log n)$。

 

转载于:https://www.cnblogs.com/TinyWong/p/7440041.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值