tensorflow项目构建流程

https://blog.csdn.net/hjimce/article/details/51899683

一、构建路线

个人感觉对于任何一个深度学习库,如mxnet、tensorflow、theano、caffe等,基本上我都采用同样的一个学习流程,大体流程如下:

(1)训练阶段:数据打包-》网络构建、训练-》模型保存-》可视化查看损失函数、验证精度

(2)测试阶段:模型加载-》测试图片读取-》预测显示结果

(3)移植阶段:量化、压缩加速-》微调-》C++移植打包-》上线

这边我就以tensorflow为例子,讲解整个流程的大体架构,完成一个深度学习项目所需要熟悉的过程代码。

二、训练、测试阶段

1、tensorflow打包数据

这一步对于tensorflow来说,也可以直接自己在线读取:.jpg图片、标签文件等,然后通过phaceholder变量,把数据送入网络中,进行计算。

不过这种效率比较低,对于大规模训练数据来说,我们需要一个比较高效的方式,tensorflow建议我们采用tfrecoder进行高效数据读取。学习tensorflow一定要学会tfrecoder文件写入、读取,具体示例代码如下:

 

  1.  
    #coding=utf-8
  2.  
    #tensorflow高效数据读取训练
  3.  
    import tensorflow as tf
  4.  
    import cv2
  5.  
     
  6.  
    #把train.txt文件格式,每一行:图片路径名 类别标签
  7.  
    #奖数据打包,转换成tfrecords格式,以便后续高效读取
  8.  
    def encode_to_tfrecords(lable_file,data_root,new_name='data.tfrecords',resize=None):
  9.  
    writer=tf.python_io.TFRecordWriter(data_root+ '/'+new_name)
  10.  
    num_example= 0
  11.  
    with open(lable_file,'r') as f:
  12.  
    for l in f.readlines():
  13.  
    l=l.split()
  14.  
    image=cv2.imread(data_root+ "/"+l[0])
  15.  
    if resize is not None:
  16.  
    image=cv2.resize(image,resize) #为了
  17.  
    height,width,nchannel=image.shape
  18.  
     
  19.  
    label=int(l[ 1])
  20.  
     
  21.  
    example=tf.train.Example(features=tf.train.Features(feature={
  22.  
    'height':tf.train.Feature(int64_list=tf.train.Int64List(value=[height])),
  23.  
    'width':tf.train.Feature(int64_list=tf.train.Int64List(value=[width])),
  24.  
    'nchannel':tf.train.Feature(int64_list=tf.train.Int64List(value=[nchannel])),
  25.  
    'image':tf.train.Feature(bytes_list=tf.train.BytesList(value=[image.tobytes()])),
  26.  
    'label':tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))
  27.  
    }))
  28.  
    serialized=example.SerializeToString()
  29.  
    writer.write(serialized)
  30.  
    num_example+= 1
  31.  
    print lable_file,"样本数据量:",num_example
  32.  
    writer.close()
  33.  
    #读取tfrecords文件
  34.  
    def decode_from_tfrecords(filename,num_epoch=None):
  35.  
    filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch) #因为有的训练数据过于庞大,被分成了很多个文件,所以第一个参数就是文件列表名参数
  36.  
    reader=tf.TFRecordReader()
  37.  
    _,serialized=reader.read(filename_queue)
  38.  
    example=tf.parse_single_example(serialized,features={
  39.  
    'height':tf.FixedLenFeature([],tf.int64),
  40.  
    'width':tf.FixedLenFeature([],tf.int64),
  41.  
    'nchannel':tf.FixedLenFeature([],tf.int64),
  42.  
    'image':tf.FixedLenFeature([],tf.string),
  43.  
    'label':tf.FixedLenFeature([],tf.int64)
  44.  
    })
  45.  
    label=tf.cast(example[ 'label'], tf.int32)
  46.  
    image=tf.decode_raw(example[ 'image'],tf.uint8)
  47.  
    image=tf.reshape(image,tf.pack([
  48.  
    tf.cast(example[ 'height'], tf.int32),
  49.  
    tf.cast(example[ 'width'], tf.int32),
  50.  
    tf.cast(example[ 'nchannel'], tf.int32)]))
  51.  
    #label=example['label']
  52.  
    return image,label
  53.  
    #根据队列流数据格式,解压出一张图片后,输入一张图片,对其做预处理、及样本随机扩充
  54.  
    def get_batch(image, label, batch_size,crop_size):
  55.  
    #数据扩充变换
  56.  
    distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪
  57.  
    distorted_image = tf.image.random_flip_up_down(distorted_image) #上下随机翻转
  58.  
    #distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化
  59.  
    #distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对比度变化
  60.  
     
  61.  
    #生成batch
  62.  
    #shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大
  63.  
    #保证数据打的足够乱
  64.  
    images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,
  65.  
    num_threads= 16,capacity=50000,min_after_dequeue=10000)
  66.  
    #images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)
  67.  
     
  68.  
     
  69.  
     
  70.  
    # 调试显示
  71.  
    #tf.image_summary('images', images)
  72.  
    return images, tf.reshape(label_batch, [batch_size])
  73.  
    #这个是用于测试阶段,使用的get_batch函数
  74.  
    def get_test_batch(image, label, batch_size,crop_size):
  75.  
    #数据扩充变换
  76.  
    distorted_image=tf.image.central_crop(image, 39./45.)
  77.  
    distorted_image = tf.random_crop(distorted_image, [crop_size, crop_size, 3])#随机裁剪
  78.  
    images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)
  79.  
    return images, tf.reshape(label_batch, [batch_size])
  80.  
    #测试上面的压缩、解压代码
  81.  
    def test():
  82.  
    encode_to_tfrecords( "data/train.txt","data",(100,100))
  83.  
    image,label=decode_from_tfrecords( 'data/data.tfrecords')
  84.  
    batch_image,batch_label=get_batch(image,label, 3)#batch 生成测试
  85.  
    init=tf.initialize_all_variables()
  86.  
    with tf.Session() as session:
  87.  
    session.run(init)
  88.  
    coord = tf.train.Coordinator()
  89.  
    threads = tf.train.start_queue_runners(coord=coord)
  90.  
    for l in range(100000):#每run一次,就会指向下一个样本,一直循环
  91.  
    #image_np,label_np=session.run([image,label])#每调用run一次,那么
  92.  
    '''cv2.imshow("temp",image_np)
  93.  
    cv2.waitKey()'''
  94.  
    #print label_np
  95.  
    #print image_np.shape
  96.  
     
  97.  
     
  98.  
    batch_image_np,batch_label_np=session.run([batch_image,batch_label])
  99.  
    print batch_image_np.shape
  100.  
    print batch_label_np.shape
  101.  
     
  102.  
     
  103.  
     
  104.  
    coord.request_stop() #queue需要关闭,否则报错
  105.  
    coord.join(threads)
  106.  
    #test()

 

2、网络架构与训练

经过上面的数据格式处理,接着我们只要写一写网络结构、网络优化方法,把数据搞进网络中就可以了,具体示例代码如下:

 

  1.  
    #coding=utf-8
  2.  
    import tensorflow as tf
  3.  
    from data_encoder_decoeder import encode_to_tfrecords,decode_from_tfrecords,get_batch,get_test_batch
  4.  
    import cv2
  5.  
    import os
  6.  
     
  7.  
    class network(object):
  8.  
    def __init__(self):
  9.  
    with tf.variable_scope("weights"):
  10.  
    self.weights={
  11.  
    #39*39*3->36*36*20->18*18*20
  12.  
    'conv1':tf.get_variable('conv1',[4,4,3,20],initializer=tf.contrib.layers.xavier_initializer_conv2d()),
  13.  
    #18*18*20->16*16*40->8*8*40
  14.  
    'conv2':tf.get_variable('conv2',[3,3,20,40],initializer=tf.contrib.layers.xavier_initializer_conv2d()),
  15.  
    #8*8*40->6*6*60->3*3*60
  16.  
    'conv3':tf.get_variable('conv3',[3,3,40,60],initializer=tf.contrib.layers.xavier_initializer_conv2d()),
  17.  
    #3*3*60->120
  18.  
    'fc1':tf.get_variable('fc1',[3*3*60,120],initializer=tf.contrib.layers.xavier_initializer()),
  19.  
    #120->6
  20.  
    'fc2':tf.get_variable('fc2',[120,6],initializer=tf.contrib.layers.xavier_initializer()),
  21.  
    }
  22.  
    with tf.variable_scope("biases"):
  23.  
    self.biases={
  24.  
    'conv1':tf.get_variable('conv1',[20,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
  25.  
    'conv2':tf.get_variable('conv2',[40,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
  26.  
    'conv3':tf.get_variable('conv3',[60,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
  27.  
    'fc1':tf.get_variable('fc1',[120,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
  28.  
    'fc2':tf.get_variable('fc2',[6,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32))
  29.  
     
  30.  
    }
  31.  
     
  32.  
    def inference(self,images):
  33.  
    # 向量转为矩阵
  34.  
    images = tf.reshape(images, shape=[ -1, 39,39, 3])# [batch, in_height, in_width, in_channels]
  35.  
    images=(tf.cast(images,tf.float32)/ 255.-0.5)*2#归一化处理
  36.  
     
  37.  
     
  38.  
     
  39.  
    #第一层
  40.  
    conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights[ 'conv1'], strides=[1, 1, 1, 1], padding='VALID'),
  41.  
    self.biases[ 'conv1'])
  42.  
     
  43.  
    relu1= tf.nn.relu(conv1)
  44.  
    pool1=tf.nn.max_pool(relu1, ksize=[ 1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
  45.  
     
  46.  
     
  47.  
    #第二层
  48.  
    conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights[ 'conv2'], strides=[1, 1, 1, 1], padding='VALID'),
  49.  
    self.biases[ 'conv2'])
  50.  
    relu2= tf.nn.relu(conv2)
  51.  
    pool2=tf.nn.max_pool(relu2, ksize=[ 1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
  52.  
     
  53.  
     
  54.  
    # 第三层
  55.  
    conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights[ 'conv3'], strides=[1, 1, 1, 1], padding='VALID'),
  56.  
    self.biases[ 'conv3'])
  57.  
    relu3= tf.nn.relu(conv3)
  58.  
    pool3=tf.nn.max_pool(relu3, ksize=[ 1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
  59.  
     
  60.  
     
  61.  
    # 全连接层1,先把特征图转为向量
  62.  
    flatten = tf.reshape(pool3, [ -1, self.weights['fc1'].get_shape().as_list()[0]])
  63.  
     
  64.  
    drop1=tf.nn.dropout(flatten, 0.5)
  65.  
    fc1=tf.matmul(drop1, self.weights[ 'fc1'])+self.biases['fc1']
  66.  
     
  67.  
    fc_relu1=tf.nn.relu(fc1)
  68.  
     
  69.  
    fc2=tf.matmul(fc_relu1, self.weights[ 'fc2'])+self.biases['fc2']
  70.  
     
  71.  
    return fc2
  72.  
    def inference_test(self,images):
  73.  
    # 向量转为矩阵
  74.  
    images = tf.reshape(images, shape=[ -1, 39,39, 3])# [batch, in_height, in_width, in_channels]
  75.  
    images=(tf.cast(images,tf.float32)/ 255.-0.5)*2#归一化处理
  76.  
     
  77.  
     
  78.  
     
  79.  
    #第一层
  80.  
    conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights[ 'conv1'], strides=[1, 1, 1, 1], padding='VALID'),
  81.  
    self.biases[ 'conv1'])
  82.  
     
  83.  
    relu1= tf.nn.relu(conv1)
  84.  
    pool1=tf.nn.max_pool(relu1, ksize=[ 1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
  85.  
     
  86.  
     
  87.  
    #第二层
  88.  
    conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights[ 'conv2'], strides=[1, 1, 1, 1], padding='VALID'),
  89.  
    self.biases[ 'conv2'])
  90.  
    relu2= tf.nn.relu(conv2)
  91.  
    pool2=tf.nn.max_pool(relu2, ksize=[ 1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
  92.  
     
  93.  
     
  94.  
    # 第三层
  95.  
    conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights[ 'conv3'], strides=[1, 1, 1, 1], padding='VALID'),
  96.  
    self.biases[ 'conv3'])
  97.  
    relu3= tf.nn.relu(conv3)
  98.  
    pool3=tf.nn.max_pool(relu3, ksize=[ 1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
  99.  
     
  100.  
     
  101.  
    # 全连接层1,先把特征图转为向量
  102.  
    flatten = tf.reshape(pool3, [ -1, self.weights['fc1'].get_shape().as_list()[0]])
  103.  
     
  104.  
    fc1=tf.matmul(flatten, self.weights[ 'fc1'])+self.biases['fc1']
  105.  
    fc_relu1=tf.nn.relu(fc1)
  106.  
     
  107.  
    fc2=tf.matmul(fc_relu1, self.weights[ 'fc2'])+self.biases['fc2']
  108.  
     
  109.  
    return fc2
  110.  
     
  111.  
    #计算softmax交叉熵损失函数
  112.  
    def sorfmax_loss(self,predicts,labels):
  113.  
    predicts=tf.nn.softmax(predicts)
  114.  
    labels=tf.one_hot(labels,self.weights[ 'fc2'].get_shape().as_list()[1])
  115.  
    loss =-tf.reduce_mean(labels * tf.log(predicts)) # tf.nn.softmax_cross_entropy_with_logits(predicts, labels)
  116.  
    self.cost= loss
  117.  
    return self.cost
  118.  
    #梯度下降
  119.  
    def optimer(self,loss,lr=0.001):
  120.  
    train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)
  121.  
     
  122.  
    return train_optimizer
  123.  
     
  124.  
     
  125.  
    def train():
  126.  
    encode_to_tfrecords( "data/train.txt","data",'train.tfrecords',(45,45))
  127.  
    image,label=decode_from_tfrecords( 'data/train.tfrecords')
  128.  
    batch_image,batch_label=get_batch(image,label,batch_size= 50,crop_size=39)#batch 生成测试
  129.  
     
  130.  
     
  131.  
     
  132.  
     
  133.  
     
  134.  
     
  135.  
     
  136.  
    #网络链接,训练所用
  137.  
    net=network()
  138.  
    inf=net.inference(batch_image)
  139.  
    loss=net.sorfmax_loss(inf,batch_label)
  140.  
    opti=net.optimer(loss)
  141.  
     
  142.  
     
  143.  
    #验证集所用
  144.  
    encode_to_tfrecords( "data/val.txt","data",'val.tfrecords',(45,45))
  145.  
    test_image,test_label=decode_from_tfrecords( 'data/val.tfrecords',num_epoch=None)
  146.  
    test_images,test_labels=get_test_batch(test_image,test_label,batch_size= 120,crop_size=39)#batch 生成测试
  147.  
    test_inf=net.inference_test(test_images)
  148.  
    correct_prediction = tf.equal(tf.cast(tf.argmax(test_inf, 1),tf.int32), test_labels)
  149.  
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  150.  
     
  151.  
     
  152.  
     
  153.  
     
  154.  
     
  155.  
    init=tf.initialize_all_variables()
  156.  
    with tf.Session() as session:
  157.  
    session.run(init)
  158.  
    coord = tf.train.Coordinator()
  159.  
    threads = tf.train.start_queue_runners(coord=coord)
  160.  
    max_iter= 100000
  161.  
    iter= 0
  162.  
    if os.path.exists(os.path.join("model",'model.ckpt')) is True:
  163.  
    tf.train.Saver(max_to_keep= None).restore(session, os.path.join("model",'model.ckpt'))
  164.  
    while iter<max_iter:
  165.  
    loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_label,batch_image,inf])
  166.  
    #print image_np.shape
  167.  
    #cv2.imshow(str(label_np[0]),image_np[0])
  168.  
    #print label_np[0]
  169.  
    #cv2.waitKey()
  170.  
    #print label_np
  171.  
    if iter%50==0:
  172.  
    print 'trainloss:',loss_np
  173.  
    if iter%500==0:
  174.  
    accuracy_np=session.run([accuracy])
  175.  
    print '***************test accruacy:',accuracy_np,'*******************'
  176.  
    tf.train.Saver(max_to_keep= None).save(session, os.path.join('model','model.ckpt'))
  177.  
    iter+= 1
  178.  
     
  179.  
     
  180.  
     
  181.  
     
  182.  
     
  183.  
    coord.request_stop() #queue需要关闭,否则报错
  184.  
    coord.join(threads)
  185.  
     
  186.  
    train()

 

3、可视化显示

(1)首先再源码中加入需要跟踪的变量:

 

tf.scalar_summary("cost_function", loss)#损失函数值

(2)然后定义执行操作:

 

merged_summary_op = tf.merge_all_summaries()

(3)再session中定义保存路径:

summary_writer = tf.train.SummaryWriter('log', session.graph)

(4)然后再session执行的时候,保存:

 

  1.  
    summary_str,loss_np,_=session.run([merged_summary_op,loss,opti])
  2.  
    summary_writer.add_summary(summary_str, iter)


(5)最后只要训练完毕后,直接再终端输入命令:

 

 

python /usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/tensorboard.py --logdir=log

 

然后打开浏览器网址:

http://0.0.0.0:6006

即可观训练曲线。

4、测试阶段

测试阶段主要是直接通过加载图模型、读取参数等,然后直接通过tensorflow的相关函数,进行调用,而不需要网络架构相关的代码;通过内存feed_dict的方式,对相关的输入节点赋予相关的数据,进行前向传导,并获取相关的节点数值。

 

  1.  
    #coding=utf-8
  2.  
    import tensorflow as tf
  3.  
    import os
  4.  
    import cv2
  5.  
     
  6.  
    def load_model(session,netmodel_path,param_path):
  7.  
    new_saver = tf.train.import_meta_graph(netmodel_path)
  8.  
    new_saver.restore(session, param_path)
  9.  
    x= tf.get_collection( 'test_images')[0]#在训练阶段需要调用tf.add_to_collection('test_images',test_images),保存之
  10.  
    y = tf.get_collection( "test_inf")[0]
  11.  
    batch_size = tf.get_collection( "batch_size")[0]
  12.  
    return x,y,batch_size
  13.  
     
  14.  
    def load_images(data_root):
  15.  
    filename_queue = tf.train.string_input_producer(data_root)
  16.  
    image_reader = tf.WholeFileReader()
  17.  
    key,image_file = image_reader.read(filename_queue)
  18.  
    image = tf.image.decode_jpeg(image_file)
  19.  
    return image, key
  20.  
     
  21.  
    def test(data_root="data/race/cropbrown"):
  22.  
    image_filenames=os.listdir(data_root)
  23.  
    image_filenames=[(data_root+ '/'+i) for i in image_filenames]
  24.  
     
  25.  
     
  26.  
    #print cv2.imread(image_filenames[0]).shape
  27.  
    #image,key=load_images(image_filenames)
  28.  
    race_listsrc=[ 'black','brown','white','yellow']
  29.  
    with tf.Session() as session:
  30.  
    coord = tf.train.Coordinator()
  31.  
    threads = tf.train.start_queue_runners(coord=coord)
  32.  
     
  33.  
     
  34.  
     
  35.  
    x,y,batch_size=load_model(session,os.path.join( "model",'model_ori_race.ckpt.meta'),
  36.  
    os.path.join( "model",'model_ori_race.ckpt'))
  37.  
    predict_label=tf.cast(tf.argmax(y, 1),tf.int32)
  38.  
    print x.get_shape()
  39.  
    for imgf in image_filenames:
  40.  
    image=cv2.imread(imgf)
  41.  
    image=cv2.resize(image,( 76,76)).reshape((1,76,76,3))
  42.  
    print "cv shape:",image.shape
  43.  
     
  44.  
     
  45.  
    #cv2.imshow("t",image_np[:,:,::-1])
  46.  
    y_np=session.run(predict_label,feed_dict = {x:image, batch_size: 1})
  47.  
    print race_listsrc[y_np]
  48.  
     
  49.  
     
  50.  
    coord.request_stop() #queue需要关闭,否则报错
  51.  
    coord.join(threads)

 

 

4、移植阶段

(1)一个算法经过实验阶段后,接着就要进入移植商用,因此接着需要采用tensorflow的c api函数,直接进行预测推理,首先我们先把tensorflow编译成链接库,然后编写cmake,调用tensorflow链接库:

 

  1.  
    bazel build -c opt //tensorflow:libtensorflow.so
  2.  
     

在bazel-bin/tensorflow目录下会生成libtensorflow.so文件

5、C++ API调用、cmake 编写:

 

 

三、熟悉常用API

1、LSTM使用

 

  1.  
    import tensorflow.nn.rnn_cell
  2.  
     
  3.  
    lstm = rnn_cell.BasicLSTMCell(lstm_size) #创建一个lstm cell单元类,隐藏层神经元个数为lstm_size
  4.  
     
  5.  
    state = tf.zeros([batch_size, lstm.state_size]) #一个序列隐藏层的状态值
  6.  
     
  7.  
    loss = 0.0
  8.  
    for current_batch_of_words in words_in_dataset:
  9.  
    output, state = lstm(current_batch_of_words, state) #返回值为隐藏层神经元的输出
  10.  
    logits = tf.matmul(output, softmax_w) + softmax_b #matmul矩阵点乘
  11.  
    probabilities = tf.nn.softmax(logits) #softmax输出
  12.  
    loss += loss_function(probabilities, target_words)

 

 

1、one-hot函数:

 

  1.  
    #ont hot 可以把训练数据的标签,直接转换成one_hot向量,用于交叉熵损失函数
  2.  
    import tensorflow as tf
  3.  
    a=tf.convert_to_tensor([[ 1],[2],[4]])
  4.  
    b=tf.one_hot(a, 5)


>>b的值为

  1.  
    [[[ 0. 1. 0. 0. 0.]]
  2.  
     
  3.  
    [[ 0. 0. 1. 0. 0.]]
  4.  
     
  5.  
    [[ 0. 0. 0. 0. 1.]]]

 

2、assign_sub

 

  1.  
    import tensorflow as tf
  2.  
     
  3.  
    x = tf.Variable( 10, name="x")
  4.  
    sub=x.assign_sub( 3)#如果直接采用x.assign_sub,那么可以看到x的值也会发生变化
  5.  
    init_op=tf.initialize_all_variables()
  6.  
    with tf.Session() as sess:
  7.  
    sess.run(init_op)
  8.  
    print sub.eval()
  9.  
    print x.eval()

可以看到输入sub=x=7

 

 

state_ops.assign_sub

采用state_ops的assign_sub也是同样sub=x=7

 

也就是说assign函数返回结果值的同时,变量本身的值也会被改变
3、变量查看

 

  1.  
    #查看所有的变量
  2.  
    for l in tf.all_variables():
  3.  
    print l.name

4、slice函数:

 

  1.  
    import cv2
  2.  
    import tensorflow as tf
  3.  
    #slice 函数可以用于切割子矩形图片,参数矩形框的rect,begin=(minx,miny),size=(width,height)
  4.  
    minx= 20
  5.  
    miny= 30
  6.  
    height= 100
  7.  
    width= 200
  8.  
     
  9.  
    image=tf.placeholder(dtype=tf.uint8,shape=( 386,386,3))
  10.  
    rect_image=tf.slice(image,(miny,minx, 0),(height,width,-1))
  11.  
     
  12.  
     
  13.  
    cvimage=cv2.imread( "1.jpg")
  14.  
    cv2.imshow( "cv2",cvimage[miny:(miny+height),minx:(minx+width),:])
  15.  
     
  16.  
     
  17.  
    with tf.Session() as sess:
  18.  
    tfimage=sess.run([rect_image],{image:cvimage})
  19.  
    cv2.imshow( 'tf',tfimage[0])
  20.  
    cv2.waitKey()

 

5、正太分布随机初始化

 

tf.truncated_normal

 

6、打印操作运算在硬件设备信息

 

tf.ConfigProto(log_device_placement=True)

7、变量域名的reuse:

  1.  
    import tensorflow as tf
  2.  
    with tf.variable_scope('foo'):#在没有启用reuse的情况下,如果该变量还未被创建,那么就创建该变量,如果已经创建过了,那么就获取该共享变量
  3.  
    v=tf.get_variable( 'v',[1])
  4.  
    with tf.variable_scope('foo',reuse=True):#如果启用了reuse,那么编译的时候,如果get_variable没有遇到一个已经创建的变量,是会出错的
  5.  
    v1=tf.get_variable( 'v1',[1])

 

8、allow_soft_placement的使用:allow_soft_placement=True,允许当在代码中指定tf.device设备,如果设备找不到,那么就采用默认的设备。如果该参数设置为false,当设备找不到的时候,会直接编译不通过。

9、batch normalize调用:

tf.contrib.layers.batch_norm(x, decay=0.9, updates_collections=None, epsilon=self.epsilon, scale=True, scope=self.name)

 

转载于:https://www.cnblogs.com/DjangoBlog/p/9244713.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: TensorFlow是一个开源的机器学习框架,广泛应用于深度学习领域。对于高职教材而言,TensorFlow具有以下特点。 首先,TensorFlow是一个功能强大的框架,它提供了丰富的机器学习和深度学习算法库,包括神经网络、卷积神经网络、循环神经网络等。这些算法库能够满足高职教材中涉及的各种机器学习和深度学习知识点的教学需求。 其次,TensorFlow具有良好的编程接口和易用性。它支持多种编程语言,如Python、C++等,开发者可以根据自己的需求选择最适合的语言进行编程。同时,TensorFlow提供了丰富的工具和文档,方便学习者快速上手和理解相关概念和技术。 此外,TensorFlow具有良好的可扩展性和跨平台性。它能够运行在各种硬件环境上,包括CPU、GPU和TPU等。这意味着高职教材中的学习者可以在不同的硬件平台上使用TensorFlow进行实践和实验,提高他们的实际操作能力。 最后,TensorFlow作为一个开源项目,拥有庞大的社区支持,学习者可以通过参与社区活动和讨论,获取更多的学习资源和解决问题的方法。这对于高职教材而言,可以提供更多的实例和案例,加强学生的理论与实践结合的能力。 综上所述,TensorFlow作为高职教材具有丰富的功能和易用性,能够帮助学习者深入理解机器学习和深度学习的知识,并将其应用于实际项目中,提高学生的实际操作能力和解决问题的能力。 ### 回答2: tensorflow 高职教材是为了满足高职院校教学需要而编写的关于tensorflow的教材。tensorflow是一种开源人工智能软件库,它可以帮助开发者更轻松地构建和训练神经网络模型。 教材中首先会介绍tensorflow的基本概念和工作原理,包括tensorflow中的张量、计算图和会话等重要概念。学生将学会如何使用tensorflow进行张量的创建和运算,以及如何构建一个简单的计算图并通过会话运行。 接下来,教材会详细介绍tensorflow中各种常用的神经网络模型及其应用。例如,学生将学习到如何使用tensorflow构建和训练深度神经网络(DNN)、卷积神经网络(CNN)和循环神经网络(RNN)等模型。教材会指导学生通过示例代码实际操作,并解释不同模型的原理和优缺点。 此外,教材还会涵盖tensorflow的性能优化和调试技巧。学生将学会如何使用tensorflow的图优化器、多线程和分布式计算等技术提高训练速度和效果。同时,教材将介绍tensorflow的调试工具和技巧,帮助学生在开发过程中快速定位和解决问题。 最后,教材中还会包含一些具体的应用案例和实践项目,帮助学生将所学知识应用到实际场景中。例如,学生可以通过教材了解如何使用tensorflow进行图像分类、语音识别和自然语言处理等任务。 总之,tensorflow高职教材将系统地介绍tensorflow的基本原理、常用模型和应用,并通过实例和实践项目帮助学生掌握tensorflow的使用技巧和调试方法,为他们日后从事人工智能相关工作打下坚实基础。 ### 回答3: 《TensorFlow 高职教材》是一本专门针对高职院校学生编写的教材,旨在教授他们关于 TensorFlow 框架的基础知识和应用技巧。 该教材的内容包括以下几个方面: 1. TensorFlow 基础知识:介绍了 TensorFlow 的起源和发展,以及其在人工智能领域中的重要性和应用范围。通过对 TensorFlow 的基本概念、架构和工作流程的讲解,使学生能够全面理解 TensorFlow 的基本原理和使用方法。 2. TensorFlow 模型训练:详细介绍了 TensorFlow搭建、训练和评估深度学习模型的过程。学生将学习到如何选择适当的网络结构、选择正确的损失函数和优化算法,以及如何使用 TensorFlow 提供的工具和库进行模型训练和调优。 3. TensorFlow 应用案例:通过一些实际的应用案例,让学生了解 TensorFlow 在计算机视觉、自然语言处理和推荐系统等领域的应用,并且指导学生如何利用 TensorFlow 构建自己的实际项目。 4. TensorFlow 最佳实践:介绍了一些 TensorFlow 的最佳实践,如性能优化、模型部署和分布式训练等方面的技巧。通过学习这些最佳实践,学生能够更加高效地使用 TensorFlow 进行工作。 《TensorFlow 高职教材》以简明易懂、通俗易懂的语言编写,配有丰富的示例代码和实验指导,结合了理论和实践,能够满足高职院校学生对 TensorFlow 的学习需求。此外,教材还根据学生的学习进度设置了习题和练习,帮助学生巩固所学知识,提高实际应用能力。 总之,《TensorFlow 高职教材》是一本系统而全面的教材,能够帮助高职院校的学生快速掌握 TensorFlow 框架,为他们将来在人工智能领域的学习和研究奠定坚实的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值