轻松搭建TensorFlow开发环境

第2章 搭建开发环境

感谢读者的支持,《深入学习之TensorFlow入门、原理与进阶实战》一书
京东购买链接:http://t.cn/Rnx4s8d

进入本书的开门阶段,先从环境的搭建开始。虽然TensorFlow支持CPU运行,但是里面也会有一些内容实例涉及到只能在GPU上运行。所以很有必要在学习本书之前购买一个带有GPU显卡的机器。
本书使用的Python 3.5开发环境,开发工具使用Anaconda,操作系统使用Windows 10。TensorFlow的学习中与平台无关,读者也可以使用linux或是Mac,也可以使用别的开发工具。如果读者对安装过程已经掌握,可以跳过本章。

2.1 下载及安装Anaconda开发工具
下面介绍Anaconda的下载及安装:
(1)通过百度来找到anaconda站,单击第一项,如图2-1所示。
图2-1   找到anaconda官网

(2)进入Anaconda官网,单击右上角的download,如图2-2所示。
图2-2  anaconda首页

(3)将屏幕拉到下面,单击图中最右测的连接“packages included in Anaconda”,如图2-3所示。
图2-3 download选项

(4)进入packages included in Anaconda页,单击图中最后一行的“package repository”,如图2-4所示。
这里写图片描述
(5)进入package repository页面,如图2-5所示。最后一行是下载裁剪后的版本。如果你硬盘足够大,建议点倒数第二行。
这里写图片描述

(6)进入完全版本的安装,如图2-6所示。这里有linux、Windows、Macosx的各种版本。可以任意选择。
这里写图片描述

注意:
TensorFlow中最高的支持Python版本为3.5与3.6是不兼容的。千万要下载对应的版本。
本书中使用的是Python3.5版本,全文以3.5版本为例。
下面以Windows为例,来介绍下安装步骤
以Anaconda3(默认使用Python3.5)的4.1.1为例。
https://repo.continuum.io/archive/Anaconda3-4.1.1-Windows-x86_64.exe
注意:
尽量下载跟本书同步的版本。因为该版本默认是整合好Python3.5的,如果下比较新的版本,默认是Python3.6或其他,会导致TensorFlow装不上
假设安装位置为 C:\local\Anaconda3-4.1.1-Windows-x86_64
安装好之后自动带有pip软件,可以通过pip安装其他软件。

注意:
Anaconda的不同版本默认支持的Python版本是不一样的。对于支持Python2的版本,统一以Anaconda2为开头来命名;对于支持Python3的版本,统一以Anaconda3为开头来命名。当前最新的版本为5.0.0。可以支持Python 3.6版本。
TensorFlow中的1.3以前的版本不支持Python 3.6版本。为了更好的兼容性,不建议下载最新的Anaconda3版本,而是推荐使用Anaconda3中支持Python 3.5的版本。例如:4.1.1、4.2.0等。
2.2 在Windows平台中下载及安装TensorFlow
1. 在线安装nightly包
nightly安装包是TensorFlow团队2017年下半年推出的安装模式。适用于在一个全新的环境下进行TensorFlow的安装。在安装TensorFlow的同时,默认会把需要依赖的库也一起装上。是非常省劲方便的安装方式。
按照图2-7中的方法直接使用命令:
pip install tf-nightly
即可下载并安装TensorFlow的最新CPU版本。若要安装最新的GPU版本可以使用如下命令:
pip install tf-nightly-gpu
2. 安装纯净的TensorFlow
如果想安装纯净的TensorFlow,直接输入下面命令即可:
pip install tensorflow
上面是CPU版本,GPU版本的安装命令如下:
pip install tensorflow-gpu
注意:
在网速不稳定的情况下,在线安装有时会因为无法成功的下载到完整的安装包,导致安装失败。可以通过重复执行安装命令或是采用离线安装的方式来解决。
3. 更新安装TensorFlow
如果本地已经装有TensorFlow,需要为其升级为新版本的TensorFlow。只需要将原有版本卸载,再次安装即可。卸载命令如下:
pip uninstall <安装时的TensorFlow名称>
4. 离线安装
有时由于网络环境的因素,无法实现在线安装。需要在网络环境好的地方提前将安装包下载下来,进行离线安装。
(1)下载安装包
可以访问以下网站来查找TensorFlow的发布版本:
https://storage.googleapis.com/tensorflow/

该网站内容是以xml方式提供的,查找起来不是非常方便。可以通过地址加上指定的文件名来进行下载。例如:一个TensorFlow1.4.0的CPU版本安装包下载路径为:
https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.4.0-cp35-cp35m-win_amd64.whl

TensorFlow1.4.0的GPU版本安装包下载路径为:
https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.4.0-cp35-cp35m-win_amd64.whl

如果要下载1.3.0版本直接将上面链接中的1.4.0改成1.3.0即可。
(2)安装安装包
来到https://github.com/tensorflow/tensorflow在下面有安装文件的地址,下载页面如图2-7所示。
这里写图片描述

由于在国内网速影响,有时会由于超时导致安装失败,这时可以再运行一次最后的安装命令。或在下列网址中下载:
https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.1.0-cp35-cp35m-win_amd64.whl
https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.2.0rc0-cp35-cp35m-win_amd64.whl
下载完TensorFlow二进制文件,假设使用cpu版本并且放到D:\tensorflow下面。
“开始”菜单里->运行->输入:cmd,打开命令行窗口
C:\Users\Administrator>D:
D:>cd tensorflow
D:\tensorflow>
D:\tensorflow>pip install tensorflow-1.1.0-cp35-cp35m-win_amd64.whl
2.3 GPU版本的安装方法
如果使用GPU版本,在执行pip之后,还需要安装Cuda和CuDnn。
2.3.1 安装CUDA软件包
来到官方网站:https://developer.nvidia.com/cuda-downloads,如图2-8所示。
这里写图片描述
根据自己的环境选择对应的版本,exe分为网络版和本地版,网络版安装包比较小,执行安装时再去下载需要的包;本地版安装包是直接下载完整安装包。下载下来后就正常安装就可以了。
注意:
CUDA软件包也有好多个版本,必须与TensorFlow的版本对应才行。比如TensorFlow1.0以后,直到TensorFlow1.5的版本只支持CUDA8.0。在本书中也是使用的CUDA8.0版本来做演示的。可以根据如下链接找到更多版本:https://developer.nvidia.com/cuda-toolkit-archive

2.3.2 安装cuDnn库
通过如下网址来到下载页面,需要注册并且填一堆问卷,才能下载这个安装包。
https://developer.nvidia.com/cudnn
cudnn的版本选择也是有规定的。以windows10操作系统为例,TensorFlow1.0到TensorFlow1.2版本使用的是cudnn的5.1版本(安装包文件为cudnn-8.0-windows10-x64-v5.1-zip),从TensorFlow1.3版本之后使用cudnn的6.0版本(cudnn-8.0-windows10-x64-v6.0.zip)。
得到相关包后解压,直接拷到cuda路径对应的文件夹下面就行。(如图2-9所示)。
这里写图片描述

2.3.3 测试显卡
这里在额外介绍两个小命令,它可以检测出在安装过程产生的问题。
1.使用nvidia-smi命令 查看显卡信息
nvidia-smi 指的是 NVIDIA System Management Interface;
在安装完成 NVIDIA 显卡驱动之后,对于 Windows 用户而言,cmd 命令行界面还无法识别 nvidia-smi 命令,需要将相关环境变量添加进去。如将 NVIDIA 显卡驱动安装在默认位置,nvidia-smi 命令所在的完整路径应当为:
C:\Program Files\NVIDIA Corporation\NVSMI
将上述路径添加进 Path 系统环境变量中。之后在cmd中运行nvidia-smi命令,可以看到如图2-10所示。
这里写图片描述
图2-10 显卡信息
图中第一行列的我的驱动信息,第三行列的是我的显卡信息:GeForce GTX 1070。第四行和第5行列的是当前使用显卡的进程。
这些信息都存在了,表明我的安装是正确的。
2.查看CUDA 的版本
同样在cmd中使用如下命令: nvcc -V
显示如图2-11所示。
这里写图片描述

关于在linux和MAC上安装可以参考如下网址:
http://www.tensorfly.cn/tfdoc/get_started/os_setup.html
3.问题处理
如果遇到问题的话,可以尝试下面的解决办法:
在命令行里面输入where MSVCP140.DLL看看本机是否有MSVCP140.DLL,如果没有可以按照如下网址安装Visual C++ Redistributable 2015
安装Visual C++ Redistributable 2015 x64(操作系统win10 64bit),下载地址]如下:
https://www.microsoft.com/en-us/download/details.aspx?id=53587
2.3 在linux和MAC平台中安装TensorFlow
对于linux与Mac都可以在上述的网站上找到对应版本的安装包,按照上述步骤依次安装即可。这里不再描述。
2.4 熟悉开发Anaconda3开发工具
在本书中使用到的开发环境是Anaconda3,在Anaconda3里一般常用的有两个工具:spyder、Jupyter Notebook,它们的位置在开始菜单下Anaconda3(64-bit)目录下,如图2-12所示。
这里写图片描述
2.4.1 快速了解Spyder
本书推荐使用Spyder作为编译器的原因是它比较方便,从安装到使用都做了相关的集成,只下载一个安装包即可,省去了大把的搭建环境时间。另外Spyder的IDE功能也很强大,基本上可以满足日常需要。下面通过几个常用的功能来介绍下其使用细节。
1.面板介绍
如图2-13所示,Spyder启动后可以分为7个区域。
这里写图片描述
菜单栏:放置所有的功能
快捷菜单栏:是菜单栏的快捷方式,上面需要放置哪些快捷方式可以通过菜单栏中的view里面的toolbar来勾选,如图2-14所示。
这里写图片描述
工作区:就是代码要写的地方;
属性页的标题栏:可以显示当前代码的名字及位置;
查看栏:可以查看文件、调试时的对象及变量;
输出栏:可以看到程序的输出信息,也可以当作shell终端来输入Python语句;
状态栏:用来显示当前文件权限、编码;鼠标指向位置;系统内存;
2. 注释功能
注释功能为编写代码中很常用的功能,下面介绍下spyder的批量注释功能,在图2-14中,勾选“Edit toolbar”会看到如图2-15所示。
这里写图片描述
当选中几行代码之后,单击该按钮即可注释代码,再次单击为取消注释。右边两个是代码缩进与不缩进,不是太长用。可以通过快捷键“Tab”与“Shift+Tab”来实现。
3.运行程序功能
如图2-16中,1按钮为运行当前工作区内的Python文件。单击2按钮会弹出一个窗口,可以输入启动程序的参数,如图中红框内的部分。
这里写图片描述
4 .调试功能
图2-16中右侧的蓝色按钮为调试功能的按钮,Python在运行中同样可以通过设置断点,来进行调试。
5.source 操作
当同时打开多个代码时,常常想回到刚刚看的代码的位置,spyder中有这么个功能可以帮你实现,在图2-14中,勾选“Source toolbar”会看到如图2-17所示,左边第一个为建立书签,第二个为回退上次的代码位置,第三个为前进到下次代码位置。
这里写图片描述
以上都是关于spyder的常用操作。当然spyder还有很多功能这里就不一一介绍了。
2.4.2 快速了解Jupyter Notebook
在深度学习中,有好多代码都是喜欢做成扩展名为ipynb的文件,这是一个关于Jupyter Notebook的文件,可以即当说明文档,又能运行Python代码的文件。Anaconda中也集成了这个软件。如图2-12中找到Jupyter Notebook,单击即可看到如图2-18界面:
这里写图片描述
该程序是bs结构,会先启动一个web服务器,然后再启动一个浏览器,通过浏览器来访问本机的服务。在这里面可以上传下载,并编写自己的ipynb文件代码。
关于jupyter notebook工具具体使用,这里不做过多介绍。有兴趣的读者可以在网上收到好多使用教程。

更多章节请购买《深入学习之TensorFlow入门、原理与进阶实战》全本
京东购买链接:http://t.cn/Rnx4s8d
关注公众号:相约机器人 图书配套视频在线观看
这里写图片描述

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页