NOIP2017整数 【线段树】

题目

题目背景

在人类智慧的山巅,有着一台字长为10485761048576 位(此数字与解题无关)的超级计算机,著名理论计算机科

学家P博士正用它进行各种研究。不幸的是,这天台风切断了电力系统,超级计算机

无法工作,而 P 博士明天就要交实验结果了,只好求助于学过OI的你. . . . . .

题目描述

P 博士将他的计算任务抽象为对一个整数的操作。

具体来说,有一个整数xx ,一开始为00 。

接下来有nn 个操作,每个操作都是以下两种类型中的一种:

1 a b:将xx 加上整数a\cdot 2^ba⋅2
b
,其中aa 为一个整数,bb 为一个非负整数

2 k :询问xx 在用二进制表示时,位权为2^k2
k
的位的值(即这一位上的11 代表 2^k2
k

保证在任何时候,x\geqslant 0x⩾0 。

输入格式

输入的第一行包含四个正整数n,t_1,t_2,t_3n,t
1
​ ,t
2
​ ,t
3
​ ,nn 的含义见题目描述,t_1t
1
​ ,t_2t
2
​ ,t_3t
3
​ 的具体含义见子任务。

接下来nn 行,每行给出一个操作,具体格式和含义见题目描述。

同一行输入的相邻两个元素之间,用恰好一个空格隔开。

输出格式

对于每个询问操作,输出一行,表示该询问的答案(00 或11 )。对于加法操作,没有任何输出。

输入样例

10 3 1 2
1 100 0
1 2333 0
1 -233 0
2 5
2 7
2 15
1 5 15
2 15
1 -1 12
2 15

输出样例

0
1
0
1
0

提示

在所有测试点中,1\leqslant t_1 \leqslant 3, 1 \leqslant t_2 \leqslant 4, 1 \leqslant t_3 \leqslant 21⩽t
1
​ ⩽3,1⩽t
2
​ ⩽4,1⩽t
3
​ ⩽2 。不同的 t_1, t_2, t_3t
1
​ ,t
2
​ ,t
3
​ 对应的特殊限制如下:

对于 t_1 = 1t
1
​ =1 的测试点,满足 a = 1a=1

对于 t_1 = 2t
1
​ =2 的测试点,满足 |a| = 1∣a∣=1
对于 t_1 = 3t
1
​ =3 的测试点,满足 |a| \leqslant 10^9∣a∣⩽10
9

对于 t_2 = 1t
2
​ =1 的测试点,满足 0 \leqslant b, k \leqslant 300⩽b,k⩽30

对于 t_2 = 2t
2
​ =2 的测试点,满足 0 \leqslant b, k \leqslant 1000⩽b,k⩽100

对于 t_2 = 3t
2
​ =3 的测试点,满足 0 \leqslant b, k \leqslant n0⩽b,k⩽n

对于 t_2 = 4t
2
​ =4 的测试点,满足 0 \leqslant b, k \leqslant 30n0⩽b,k⩽30n

对于 t_3 = 1t
3
​ =1 的测试点,保证所有询问操作都在所有修改操作之后

对于 t_3 = 2t
3
​ =2 的测试点,不保证询问操作和修改操作的先后顺序
本题共 25 个测试点,每个测试点 4 分。各个测试点的数据范围如下:

1318028-20180207193744013-1133037827.png

题解

先考虑暴力
我们将30位压在一起,存到一个数组中,每次加减只要找到对应位置加上,处理进位即可

但这样会T,因为进位可以是一整个数组

什么情况下会T呢?
考虑11111111111111111111111111111111111111......
我们加上一个1
变成10000000000000000000000000000000000.....
又减去一个1
变成1111111111111111111111111111111111111111.....

我们发现,如果进位的地方不是全1,可以直接加上
如果进位的地方全1,那么重置为0,往下一位继续进位
如果有一整段都为1,那么全部置为0,往第一个不全是1的位进1
所以可以写一个线段树维护
【口胡很简单。。。。。我不会说我调了一个下午

#include<iostream>
#include<cstdio>
#include<algorithm>
#define BIT (1 << 30)
#define ls (u << 1)
#define rs (u << 1 | 1)
#define LL long long int
using namespace std;
const int maxn = 1000005,maxm = 1000005,INF = BIT - 1;
inline LL read(){
    LL out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
    while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
    return out * flag;
}
LL n,val[4 * maxn],tag[4 * maxn];
void pd(int u){
    if (tag[u] == -1) val[ls] = val[rs] = 0,tag[ls] = tag[rs] = -1;
    if (tag[u] == 1) val[ls] = val[rs] = INF,tag[ls] = tag[rs] = 1;
    tag[u] = 0;
}
void upd(int u){
    if (val[ls] == INF && val[rs] == INF) val[u] = INF;
    else if (val[ls] == 0 && val[rs] == 0) val[u] = 0;
    else val[u] = 1;
}
int modify(int u,int l,int r,int pos,LL v){
    if (l == r){
        val[u] += v;
        if (val[u] < 0) {val[u] += BIT; return -1;}
        if (val[u] > INF) {val[u] -= BIT; return 1;}
        return 0;
    }
    pd(u);
    int mid = l + r >> 1,t;
    if (mid >= pos) t = modify(ls,l,mid,pos,v);
    else t = modify(rs,mid + 1,r,pos,v);
    upd(u);
    return t;
}
int Add(int u,int l,int r,int pos){
    if (l == r){
        val[u]++;
        if (val[u] > INF) {val[u] = 0; return true;}
        return false;
    }
    pd(u);
    int mid = l + r >> 1,t = true;
    if (l >= pos){
        if (val[ls] == INF){
            val[ls] = 0; tag[ls] = -1;
            t = Add(rs,mid + 1,r,pos); upd(u);
            return t;
        }
        t = Add(ls,l,mid,pos); upd(u);
        return t;
    }
    if (mid >= pos) t = Add(ls,l,mid,pos);
    if (t) t = Add(rs,mid + 1,r,pos);
    upd(u);
    return t;
}
int Minus(int u,int l,int r,int pos){
    if (l == r){
        val[u]--;
        if (val[u] < 0) {val[u] = INF; return true;}
        return false;
    }
    pd(u);
    int mid = l + r >> 1,t = true;
    if (l >= pos){
        if (val[ls] == 0){
            val[ls] = INF; tag[ls] = 1;
            t = Minus(rs,mid + 1,r,pos); upd(u);
            return t;
        }
        t = Minus(ls,l,mid,pos); upd(u);
        return t;
    }
    if (mid >= pos) t = Minus(ls,l,mid,pos);
    if (t) t = Minus(rs,mid + 1,r,pos);
    upd(u);
    return t;
}
int getv(int u,int l,int r,int pos,LL v){
    if (l == r) return (val[u] & (1 << v)) != 0;
    pd(u);
    int mid = l + r >> 1;
    if (mid >= pos) return getv(ls,l,mid,pos,v);
    return getv(rs,mid + 1,r,pos,v);
}
int main(){
    n = read(); read(); read(); read();
    int opt,a,b,t,pos,tt,len,flag;
    for (int i = 1; i <= n; i++){
        opt = read(); a = read();
        if (opt & 1){
            b = read(); flag = a >= 0 ? 1 : -1;
            a *= flag;
            pos = b / 30; tt = b - pos * 30; len = 30 - tt;
            t = modify(1,0,n + 5,pos,flag * ((a & ((1 << len) - 1)) << tt));
            if (t == 1) Add(1,0,n + 5,pos + 1);
            if (t == -1) Minus(1,0,n + 5,pos + 1);
            a >>= len;
            if (a){
                t = modify(1,0,n + 5,pos + 1,flag * a);
                if (t == 1) Add(1,0,n + 5,pos + 2);
                if (t == -1) Minus(1,0,n + 5,pos + 2);
            }
        }else {
            printf("%d\n",getv(1,0,n + 5,a / 30,a % 30));
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/Mychael/p/8428189.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
你好!感谢你的提问。根据你的要求,我将为你解答关于NOIP2017普及t3问题的内容。 在这道题目中,我们需要解决一个关于棋盘的问题。题目描述了一个n×m的棋盘,每个格子上有一个非负整数。开始时,小明站在左上角的格子上,他可以向右或向下移动一步,每次移动的代价为目标格子上的数值。我们需要找到一条从左上角到右下角的路径,使得移动的总代价最小。 解决这个问题的一个常见的方法是使用动态规划(Dynamic Programming)。我们可以创建一个二维数组dp,其中dp[i][j]表示从起点到达坐标为(i, j)的格子时的最小代价。然后,我们可以按照从左上角到右下角的顺序依次计算dp数组的值。 具体的计算方法如下: 1. 首先,我们可以初始化dp数组的第一行和第一列,即dp[0][j]和dp[i][0],它们表示从起点到达第一行和第一列的格子时的最小代价。初始化的方法是累加前面的格子的代价。 2. 接下来,我们可以使用一个双重循环,从(1, 1)开始遍历整个棋盘。对于每个格子(i, j),我们可以选择从上方格子(i-1, j)或左方格子(i, j-1)中选择一个代价较小的路径,并加上当前格子的代价。即dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]。 3. 最后,当我们计算完dp数组的所有值后,dp[n-1][m-1]即为从起点到达右下角的格子时的最小代价。 这样,我们就可以得到从左上角到右下角的最小代价。希望能对你的问题有所帮助!如果你还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值