转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove
做了几个非常基础的数位DP,很水。弱爆了,接下来要进行进阶训练了
HDU 2089 不要62
http://acm.hdu.edu.cn/showproblem.php?pid=2089
不能出现4,或者相邻的62,这题可以暴力打表解决
具体的在代码里都有解释
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 55
#define inf 1<<29
#define MOD 9973
#define LL long long
#define eps 1e-7
#define zero(a) fabs(a)<eps
#define equal(a,b) zero(a-b)
using namespace std;
int dp[10][3];
//dp[i][0],表示不存在不吉利数字
//dp[i][1],表示不存在不吉利数字,且最高位为2
//dp[i][2],表示存在不吉利数字
void Init(){
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=1;i<=6;i++){
dp[i][0]=dp[i-1][0]*9-dp[i-1][1]; //在最高位加上除了4之外的9个数字,但是可能在2之前加了6
dp[i][1]=dp[i-1][0]; //就是在原先不含不吉利数字的最高位加2
dp[i][2]=dp[i-1][2]*10+dp[i-1][0]+dp[i-1][1]; //在已经有不吉利数字最高位加任意数字,或者在无吉利数字前加4,或者在2前面加4
}
}
int slove(int n){
int len=0,bit[10];
int tmp=n;
while(n){
bit[++len]=n%10;
n/=10;
}
bit[len+1]=0;
int ans=0;
bool flag=false;
for(int i=len;i;i--){
ans+=dp[i-1][2]*bit[i];
if(flag) //高位已经出现4或者62,后面的就随意
ans+=dp[i-1][0]*bit[i];
if(!flag&&bit[i]>4) //高位可能出现4的情况
ans+=dp[i-1][0];
if(!flag&&bit[i+1]==6&&bit[i]>2) //高位是6,后面一位可能出现2,这步debug了很久
ans+=dp[i][1];
if(!flag&&bit[i]>6) //高位可能出现6,要把后面最高位为2计入
ans+=dp[i-1][1];
if(bit[i]==4||(bit[i+1]==6&&bit[i]==2)) //高位已经出现4或者62
flag=true;
}
return tmp-ans;
}
int main(){
int l,r;
Init();
while(scanf("%d%d",&l,&r)!=EOF&&l+r)
printf("%d\n",slove(r+1)-slove(l));
return 0;
}
HDU 3555 BOMB
http://acm.hdu.edu.cn/showproblem.php?pid=3555
不能出现相邻的49,和上一题类似
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 55
#define inf 1<<29
#define MOD 9973
#define LL long long
#define eps 1e-7
#define zero(a) fabs(a)<eps
#define equal(a,b) zero(a-b)
using namespace std;
LL dp[21][3],n;
int len,bit[21];
//dp[i][0]表示长度为i,包括49的个数
//dp[i][1]表示长度为i,没有49但是开头为9的个数
//dp[i][2]表示长度为i,没有49
void Init(){
memset(dp,0,sizeof(dp));
dp[0][2]=1;
for(int i=1;i<20;i++){
dp[i][0]=(LL)dp[i-1][0]*10+dp[i-1][1];
dp[i][1]=dp[i-1][2];
dp[i][2]=(LL)dp[i-1][2]*10-dp[i-1][1];
}
}
int main(){
Init();
int t;
scanf("%d",&t);
while(t--){
scanf("%I64d",&n);
len=0;
n++;
while(n){
bit[++len]=n%10;
n/=10;
}
bit[len+1]=0;
LL ans=0;
bool flag=false;
for(int i=len;i;i--){
ans+=(LL)dp[i-1][0]*bit[i];
if(flag)
ans+=(LL)dp[i-1][2]*bit[i];
if(!flag&&bit[i]>4)
ans+=dp[i-1][1];
if(bit[i]==9&&bit[i+1]==4)
flag=true;
}
printf("%I64d\n",ans);
}
return 0;
}
UESTC 1307 WINDY 数
http://acm.uestc.edu.cn/problem.php?pid=1307
要求相邻的数差大于等于2
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 100005
#define inf 1<<29
#define MOD 9973
#define LL long long
#define eps 1e-7
#define zero(a) fabs(a)<eps
#define equal(a,b) zero(a-b)
using namespace std;
int dp[15][10];
//dp[i][j]表示考虑i位的数中,最高为j的windy数
void Init(){
memset(dp,0,sizeof(dp));
for(int i=0;i<=9;i++)
dp[1][i]=1;
for(int i=2;i<=10;i++){
for(int j=0;j<10;j++){
for(int k=0;k<10;k++)
if(abs(j-k)>=2)
dp[i][j]+=dp[i-1][k];
}
}
}
int slove(int n){
int len=0,bit[15];
while(n){
bit[++len]=n%10;
n/=10;
}
bit[len+1]=0;
int ans=0;
//先把长度为1至len-1计入
for(int i=1;i<len;i++)
for(int j=1;j<10;j++)
ans+=dp[i][j];
//确定最高位
for(int j=1;j<bit[len];j++)
ans+=dp[len][j];
for(int i=len-1;i;i--){
for(int j=0;j<bit[i];j++)
if(abs(j-bit[i+1])>=2)
ans+=dp[i][j];
//如果高位已经出现非法,直接退出
if(abs(bit[i]-bit[i+1])<2)
break;
}
return ans;
}
int main(){
Init();
int l,r;
while(scanf("%d%d",&l,&r)!=EOF)
printf("%d\n",slove(r+1)-slove(l));
return 0;
}