使用Dataset构建数据到lgb中

  训练数据要放到Dataset中供lgb使用,构建数据如下:

 1 import lightgbm as lgb
 2 import numpy as np
 3 
 4 # 训练数据,500个样本,10个维度
 5 train_data = np.random.rand(500, 10)
 6 # 构建二分类数据
 7 label = np.random.randint(2, size=500)
 8 # 放入到dataset中
 9 train = lgb.Dataset(train_data, label=label)
10 print(train)

  很清晰的构建数据方式,记住这种用法

  指定 feature names(特征名称)和 categorical features(分类特征):

1 train_data = lgb.Dataset(data, label=label, feature_name=['c1', 'c2', 'c3'], categorical_feature=['c3'])

  分类特征可以人为制定,使用categorical_feature选取你制定的名称

转载于:https://www.cnblogs.com/demo-deng/p/9618514.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值