BZOJ2595 WC2008游览计划(斯坦纳树)

  斯坦纳树板子题。

  考虑状压dp,设f[i][j][S]表示当前在点(i,j)考虑转移,其所在的联通块包含的关键点集(至少)为S的答案。

  转移时首先枚举子集,有f[i][j][S]=min{f[i][j][x]+f[i][j][y]-a[i][j]} (x&y=0,x|y=S)。

  然后考虑从点(i,j)从哪拓展而来,有f[i][j][S]=min{f[x][y][S]}+a[i][j],其中(x,y)为(i,j)的相邻点,使用spfa转移。

  这里第二种转移仅在相同关键点集下进行,因为由更小点集转移而来的情况已在第一种转移中被考虑。

  对于输出方案,记录如何转移而来即可。

  其实并没有搞懂。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 12
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
int n,m,s,a[N][N],id[N][N],f[N][N][1<<N],from[N][N][1<<N][2],q[N*N*N*N][2];
int wx[4]={1,0,0,-1},wy[4]={0,1,-1,0};
bool flag[N][N];
char b[N][N];
void inc(int &x){x++;if (x>n*m+1) x-=n*m+1;}
void spfa(int k)
{
    int head=0,tail=0;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        tail++,q[tail][0]=i,q[tail][1]=j,flag[i][j]=1;
    do
    {
        inc(head);int x=q[head][0],y=q[head][1];flag[x][y]=0;
        for (int i=0;i<4;i++)
        {
            int u=x+wx[i],v=y+wy[i];
            if (u&&u<=n&&v&&v<=m&&f[x][y][k]+a[u][v]<f[u][v][k])
            {    
                f[u][v][k]=f[x][y][k]+a[u][v];
                from[u][v][k][0]=x,from[u][v][k][1]=y;
                if (!flag[u][v]) flag[u][v]=1,inc(tail),q[tail][0]=u,q[tail][1]=v;
            }
        }
    }while (head!=tail);
}
void getans(int x,int y,int k)
{
    b[x][y]='o';
    while (from[x][y][k][0]>0)
    {
        int u=from[x][y][k][0],v=from[x][y][k][1];
        b[x=u][y=v]='o';
    }
    if (from[x][y][k][0]<0) getans(x,y,-from[x][y][k][0]),getans(x,y,-from[x][y][k][1]);
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj2595.in","r",stdin);
    freopen("bzoj2595.out","w",stdout);
#endif
    n=read(),m=read();
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        {
            a[i][j]=read(),s+=(a[i][j]==0);
            if (!a[i][j]) id[i][j]=s;
        }
    memset(f,42,sizeof(f));
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        {
            f[i][j][0]=a[i][j];
            if (id[i][j]) f[i][j][1<<id[i][j]-1]=a[i][j];
        }
    for (int k=1;k<(1<<s);k++)
    {
        for (int i=1;i<=n;i++)
            for (int j=1;j<=m;j++)
                for (int x=k;x>=(k^x);x=x-1&k)
                if (f[i][j][x]+f[i][j][k^x]-a[i][j]<f[i][j][k])
                {
                    f[i][j][k]=f[i][j][x]+f[i][j][k^x]-a[i][j];
                    from[i][j][k][0]=-x,from[i][j][k][1]=-(k^x);
                }
        spfa(k);
    }
    int ans=100000000;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        ans=min(ans,f[i][j][(1<<s)-1]);
    cout<<ans<<endl;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        b[i][j]='_';
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        if (f[i][j][(1<<s)-1]==ans)
        {
            getans(i,j,(1<<s)-1);
            for (int i=1;i<=n;i++)
                for (int j=1;j<=m;j++)
                if (!a[i][j]) b[i][j]='x';
            for (int i=1;i<=n;i++)
            {
                for (int j=1;j<=m;j++)
                putchar(b[i][j]);
                cout<<endl;
            }
            return 0;
        }
}

 

转载于:https://www.cnblogs.com/Gloid/p/10256845.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值