[BZOJ2595][Wc2008]游览计划(斯坦纳树)

Address

https://www.lydsy.com/JudgeOnline/problem.php?id=2595

Solution

作为模板题,说一说斯坦纳树。
斯坦纳树是一种特殊的状态压缩DP
在图上给定一些关键点( 10 10 个左右),选出一些边,求选出的边连通所有关键点的最小代价。
斯坦纳最小生成树
DP 模型:
定义状态 f[u][S] f [ u ] [ S ] 表示将点 u u 与关键点集合 S 连通的最小代价。
也可以理解为以 u u 为根的子树内包含了关键点集合 S 的最小代价。
边界: u u 是关键点时, f[u][{u}]=0,f[ELSE]=
转移:分两种情况。
(1) u u 有不止一个子树。可以枚举 S 的非空真子集 S S ′ ,让 S S ′ SS S − S ′ u u 的不同子树内:

f[u][S]=min(f[u][S],f[u][S]+f[u][SS])

(2) u u 只有一个子树。枚举连接 u 的边 (u,v) ( u , v )

f[u][S]=min(f[u][S],f[v][S]+cost(u,v)) f [ u ] [ S ] = min ( f [ u ] [ S ] , f [ v ] [ S ] + c o s t ( u , v ) )

不过很容易发现,第二个转移方程会造成环形转移,但这个式子特别像最短路中的三角形不等式。因此对于每个 S S ,转移(1)全部进行完之后,要对所有满足 f[u][S] 的点跑 SPFA ,这样就排除了转移的后效性。
连接所有 m m 个点 u1,u2,...,um 的最小代价:
minuf[u][{ui|1im}] min u f [ u ] [ { u i | 1 ≤ i ≤ m } ]

回到原问题。发现此题与上面介绍的斯坦纳树有一点区别:上面的斯坦纳树求 边权最小值,而此题求 点权最小值,因此边界和转移都有变化。
边界:
u,f[u][{u}]=cost[u],f[ELSE]= ∀ u 是 关 键 点 , f [ u ] [ { u } ] = c o s t [ u ] , f [ ELSE ] = ∞

转移(1):
f[u][S]=min(f[u][S],f[u][S]+f[u][SS]cost[u]) f [ u ] [ S ] = min ( f [ u ] [ S ] , f [ u ] [ S ′ ] + f [ u ] [ S − S ′ ] − c o s t [ u ] )

转移(2):
f[u][S]=min(f[u][S],f[v][S]+cost[u]) f [ u ] [ S ] = min ( f [ u ] [ S ] , f [ v ] [ S ] + c o s t [ u ] )

题目要求输出方案,因此需要对每个状态记下它从哪个状态转移得到。

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define For(i, a, b) for (i = a; i <= b; i++)
#define Subset(i, k) for (k = (i - 1) & i; k; k = (k - 1) & i)
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 13, E = 105, C = (1 << 10) + 5, M = 1e6 + 5, INF = 0x3f3f3f3f;
int n, m, K, a[N][N], id[N][N], tx[E], ty[E], dx[] = {-1, 1, 0, 0},
dy[] = {0, 0, -1, 1}, f[E][C], len, que[M], pre[E][C]; bool vis[E], ove[N][N];
void SPFA(int S) {
    int i, j; For (i, 1, len) {
        int x = tx[que[i]], y = ty[que[i]], u = que[i]; vis[u] = 0;
        For (j, 0, 3) {
            int tx = x + dx[j], ty = y + dy[j];
            if (tx < 1 || tx > n || ty < 1 || ty > m) continue;
            int v = id[tx][ty], ndis = f[u][S] + a[tx][ty]; if (ndis < f[v][S]) {
                f[v][S] = ndis; pre[v][S] = u;
                if (!vis[v]) vis[que[++len] = v] = 1;
            }
        }
    }
}
void solve(int x, int y, int S) {
    int i, u = id[x][y]; ove[x][y] = 1;
    Subset(S, i) if (f[u][S] == f[u][i] + f[u][S - i] - a[x][y]) {
        solve(x, y, i); solve(x, y, S - i); return;
    }
    if (pre[u][S]) solve(tx[pre[u][S]], ty[pre[u][S]], S);
}
int main() {
    int i, j, k, T = 0, Cm, r; n = read(); m = read(); r = n * m;
    memset(f, INF, sizeof(f));
    For (i, 1, n) For (j, 1, m) a[i][j] = read(), tx[id[i][j] = ++T] = i,
        ty[T] = j, K += !a[i][j], !a[i][j] ? f[T][1 << K - 1] = 0 : 0;
    Cm = (1 << K) - 1; For (i, 1, Cm) {
        len = 0; For (j, 1, r) vis[j] = 0; For (j, 1, r) {
            Subset (i, k)
                f[j][i] = min(f[j][i], f[j][k] + f[j][i - k] - a[tx[j]][ty[j]]);
            if (f[j][i] != INF) vis[que[++len] = j] = 1;
        }
        SPFA(i);
    }
    int ans = INF, st; For (i, 1, r) if (f[i][Cm] < ans) ans = f[i][Cm], st = i;
    cout << ans << endl; solve(tx[st], ty[st], Cm); For (i, 1, n) {
        For (j, 1, m) putchar(ove[i][j] ? (a[i][j] ? 'o' : 'x') : '_');
        putchar('\n');
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值