皮肤饥渴症

偶居然和贾环得的是一种病
里真是没想到早在200多年前就被曹老人家发现了
刘心武对病源的分析一点不错
而且还用了这个被偶引用n次的西方心理学名词--皮肤饥渴症
他说的没错
“如果你自己有孩子的话
要从小懂得去抚摸他
凡是从小没有被父母充分抚摸的生命
都会在心理上产生一种疾患
那么就是‘ 皮肤饥渴症‘
。。。。。”
可是后面就有点不敢写了
偶还没贾环那么变态吧?
偶的孩子当然也不要
抚摸宝贝们吧
所有的爸爸妈妈

转载于:https://www.cnblogs.com/loverain/archive/2008/02/05/1065182.html

Transformer数据饥渴是指在使用Transformer进行训练时,由于Transformer模型通常具有大量的参数,需要大量的数据来进行有效的训练。由于Transformer对于大规模数据的需求,如果没有足够的训练数据,模型可能无法充分学习到数据的特征和模式,从而导致过拟合或性能下降。 为了解决Transformer数据饥渴的问题,可以考虑以下几个方法: 1. 数据增强:可以通过对训练数据进行各种变换和扩增来增加数据的多样性。例如,对图像数据可以进行旋转、缩放、翻转等操作,对文本数据可以进行随机掩码、替换等操作。通过数据增强可以有效扩展训练数据的规模,提高模型的泛化能力。 2. 迁移学习:可以利用预训练的Transformer模型,在具有大规模数据集上进行预训练,然后将预训练的模型参数应用于目标任务。这样可以利用大规模数据集的丰富信息来初始化模型参数,从而加速模型的收敛和提高性能。 3. 数据合成:如果实际数据量不足,可以通过合成数据来增加训练样本。例如,可以使用生成对抗网络(GAN)生成合成数据,并将其与真实数据混合在一起进行训练。这样可以增加数据的多样性和数量,提高模型的泛化能力。 4. 弱监督学习:在数据量不足的情况下,可以考虑使用弱监督学习方法来利用更少的标注数据进行训练。例如,可以使用标签噪声较低的数据或者只使用部分标签进行训练。弱监督学习可以减轻数据需求,同时保持一定的模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值