HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)

Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u

 Status

Description

任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: 
F(1)=1; 
F(2)=2; 
F(n)=F(n-1)+F(n-2)(n>=3); 
所以,1,2,3,5,8,13……就是菲波那契数列。 
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。 
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下: 
1、  这是一个二人游戏; 
2、  一共有3堆石子,数量分别是m, n, p个; 
3、  两人轮流走; 
4、  每走一步可以选择任意一堆石子,然后取走f个; 
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量); 
6、  最先取光所有石子的人为胜者; 

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。 
 

Input

输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。 
m=n=p=0则表示输入结束。 
 

Output

如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。 
 

Sample Input

1 1 1 1 4 1 0 0 0
 

Sample Output

Fibo Nacci
题意如题。
题解:求sg值即可,因为i的后继都是小于i的,即i的后继的sg值已知,所以可以不搜索,给出两种AC代码。
利用dfs求sg函数:
#include <iostream>  
#include <string.h>  
#include <stdio.h>  
  
using namespace std;  
const int N = 1005;  
const int M = 25;  
  
int fib[25];  
int SG[N];  
  
int mex(int x)  
{  
    bool vis[M];  
    memset(vis,0,sizeof(vis));  
    for(int i=0;i<M;i++)  
    {  
        int t = x - fib[i];  
        if(t < 0) break;  
        if(SG[t] == -1)  
            SG[t] = mex(t);  
        vis[SG[t]] = 1;  
    }  
    for(int i=0;;i++)  
    if(!vis[i]) return i;  
}  
  
void Init()  
{  
    fib[0] = 1;  
    fib[1] = 2;  
    for(int i=2;i<M;i++)  
        fib[i] = fib[i-1] + fib[i-2];  
    memset(SG,-1,sizeof(SG));  
    for(int i=0;i<N;i++)  
        SG[i] = mex(i);  
}  
  
int main()  
{  
    Init();  
    int a,b,c;  
    while(~scanf("%d%d%d",&a,&b,&c))  
    {  
        if(a == 0 && b == 0 && c == 0) break;  
        int ans = 0;  
        ans ^= SG[a];  
        ans ^= SG[b];  
        ans ^= SG[c];  
        if(ans) puts("Fibo");  
        else    puts("Nacci");  
    }  
    return 0;  
}  

非深搜:

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
const int N = 1005;
const int M = 25;
int fib[25];
int SG[N];
void get()
{
    bool vis[M];
    for(int i=0;i<N;i++) //sg数组
    {
        memset(vis,0,sizeof(vis));
        for(int j=0;j<M&&fib[j]<=i;j++) //要用的s数组  注意这里有等号
        {
            vis[SG[i-fib[j]]]=1;
        }
        for(int x=0;x<N;x++)
            if(!vis[x])
        {
            SG[i]=x;
            break;
        }
    }

}
void Init()
{
    fib[0] = 1;
    fib[1] = 2;
    for(int i=2;i<M;i++)
        fib[i] = fib[i-1] + fib[i-2];
    memset(SG,0,sizeof(SG)); //这里定义成 -1和0都可以
        get();
}

int main()
{
    Init();
    int a,b,c;
    while(~scanf("%d%d%d",&a,&b,&c))
    {
        if(a == 0 && b == 0 && c == 0) break;
        int ans = 0;
        ans ^= SG[a];
        ans ^= SG[b];
        ans ^= SG[c];
        if(ans) puts("Fibo");
        else    puts("Nacci");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/Ritchie/p/5628002.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值