小T有一个很大的书柜。这个书柜的构造有些独特,即书柜里的书是从上至下堆放成一列。她用1到n的正整数给每本书都编了号。 小T在看书的时候,每次取出一本书,看完后放回书柜然后再拿下一本。由于这些书太有吸引力了,所以她看完后常常会忘记原来是放在书柜的什么位置。不过小T的记忆力是非常好的,所以每次放书的时候至少能够将那本书放在拿出来时的位置附近,比如说她拿的时候这本书上面有X本书,那么放回去时这本书上面就只可能有X-1、X或X+1本书。 当然也有特殊情况,比如在看书的时候突然电话响了或者有朋友来访。这时候粗心的小T会随手把书放在书柜里所有书的最上面或者最下面,然后转身离开。 久而久之,小T的书柜里的书的顺序就会越来越乱,找到特定的编号的书就变得越来越困难。于是她想请你帮她编写一个图书管理程序,处理她看书时的一些操作,以及回答她的两个提问:(1)编号为X的书在书柜的什么位置;(2)从上到下第i本书的编号是多少。
Input
第一行有两个数n,m,分别表示书的个数以及命令的条数;第二行为n个正整数:第i个数表示初始时从上至下第i个位置放置的书的编号;第三行到m+2行,每行一条命令。命令有5种形式: 1. Top S——表示把编号为S的书房在最上面。 2. Bottom S——表示把编号为S的书房在最下面。 3. Insert S T——T∈{-1,0,1},若编号为S的书上面有X本书,则这条命令表示把这本书放回去后它的上面有X+T本书; 4. Ask S——询问编号为S的书的上面目前有多少本书。 5. Query S——询问从上面数起的第S本书的编号。
Output
对于每一条Ask或Query语句你应该输出一行,一个数,代表询问的答案。
Sample Input
10 10
1 3 2 7 5 8 10 4 9 6
Query 3
Top 5
Ask 6
Bottom 3
Ask 3
Top 6
Insert 4 –1
Query 5
Query 2
Ask 2
1 3 2 7 5 8 10 4 9 6
Query 3
Top 5
Ask 6
Bottom 3
Ask 3
Top 6
Insert 4 –1
Query 5
Query 2
Ask 2
Sample Output
2
9
9
7
5
3
数据范围
30%的数据,n,m < = 10000
100%的数据,n,m < = 80000
9
9
7
5
3
数据范围
30%的数据,n,m < = 10000
100%的数据,n,m < = 80000
这是一道splay的模板题,算是入门了吧,毕竟不会所有平衡树,过会得开一讲了,
这道题就是裸的splay,真的比较水,整理的是hzwer大佬的模板,注释在代码上来。
1 #include<cstdio> 2 #include<iostream> 3 #include<algorithm> 4 #include<cmath> 5 #include<cstring> 6 7 using namespace std; 8 9 const int NN=80007,inf=1e9+7; 10 11 int n,m,rt,sz; 12 int c[NN][2],fa[NN],deep[NN]; 13 int a[NN],size[NN],v[NN],pos[NN]; 14 15 void update(int k)//仅仅用来得到k的大小 16 { 17 size[k]=size[c[k][0]]+size[c[k][1]]+1; 18 } 19 void rotate(int x,int &k)//一次旋转 20 { 21 int y=fa[x],z=fa[y],l,r; 22 if (c[y][0]==x) l=0; 23 else l=1; 24 r=l^1; 25 if (y==k) k=x; 26 else if (c[z][0]==y) c[z][0]=x; 27 else c[z][1]=x; 28 fa[x]=z,fa[y]=x,fa[c[x][r]]=y; 29 c[y][l]=c[x][r],c[x][r]=y; 30 update(y),update(x);//普通的一次操作。 31 } 32 void splay(int x,int &k) 33 { 34 while(x!=k) 35 { 36 int y=fa[x],z=fa[y]; 37 if (y!=k) 38 { 39 if (c[y][0]==x^c[z][0]==y)//这个是判断zig还是zag,来决定谁先交换。 40 rotate(x,k); 41 else rotate(y,k); 42 } 43 rotate(x,k); 44 } 45 } 46 void build(int l,int r,int f)//l,r是表示区间,f表示根 47 { 48 if (l>r) return; 49 int now=l,last=f; 50 if (l==r) 51 { 52 v[now]=a[l],size[now]=1,fa[now]=last; 53 if (l<f) c[last][0]=now;//右边左边的问题 54 else c[last][1]=now; 55 return; 56 } 57 int mid=(l+r)>>1; 58 now=mid; 59 build(l,mid-1,mid);build(mid+1,r,mid); 60 v[now]=a[mid],fa[now]=last; 61 update(now); 62 if (mid<f) c[last][0]=now; 63 else c[last][1]=now; 64 } 65 int find(int k,int rank)//以k为根的树中找rank 66 { 67 int l=c[k][0],r=c[k][1]; 68 if (size[l]+1==rank) return k; 69 else if (size[l]>=rank) return find(l,rank); 70 else return find(r,rank-size[l]-1); 71 } 72 void del(int k) 73 { 74 int x,y,z; 75 x=find(rt,k-1),y=find(rt,k+1); 76 splay(x,rt),splay(y,c[x][1]); 77 z=c[y][0],c[y][0]=0,fa[z]=size[z]=0;//把前驱转到根,把后驱转到根右子树,然后根右子树左儿子就是要删除的值。 78 update(y),update(x); 79 } 80 void move(int k,int val)//就是将编号为k的放到val值的地方。 81 { 82 int x,y,z=pos[k],rank; 83 splay(z,rt); 84 rank=size[c[z][0]]+1; 85 del(rank); 86 if (val==inf) x=find(rt,n),y=find(rt,n+1); 87 else if (val==-inf) x=find(rt,1),y=find(rt,2); 88 else x=find(rt,rank+val-1),y=find(rt,rank+val); 89 splay(x,rt),splay(y,c[x][1]); 90 size[z]=1,fa[z]=y,c[y][0]=z; 91 update(y),update(x); 92 } 93 int main() 94 { 95 scanf("%d%d",&n,&m); 96 for (int i=2;i<=n+1;i++)//特别把1空出来,防止越界。 97 { 98 scanf("%d",&a[i]); 99 pos[a[i]]=i;//反向映射。 100 } 101 build(1,n+2,0); 102 rt=(3+n)>>1; 103 char ch[10];int S,T; 104 for (int i=1;i<=m;i++) 105 { 106 scanf("%s%d",ch,&S); 107 switch(ch[0]) 108 { 109 case'T':move(S,-inf);break; 110 case'B':move(S,inf);break; 111 case'I':scanf("%d",&T);move(S,T);break; 112 case'A':splay(pos[S],rt);printf("%d\n",size[c[pos[S]][0]]-1);break; 113 case'Q':printf("%d\n",v[find(rt,S+1)]);break; 114 } 115 } 116 }