求最大连续子数组的和

看到过一道面试题,网上搜了一下资料,整理一下记下来。题目是这么说的:

输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)。
        例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。
如果不考虑时间复杂度,我们可以枚举出所有子数组并求出他们的和。不过非常遗憾的是,由于长度为n的数组有O(n2),具体是n*(n+1)/2个子数组;而且求一个长度为n的数组的和的时间复杂度为O(n)。因此这种思路的时间是O(n3)。
 
很容易理解的是,当我们加上一个正数时,和会增加;当我们加上一个负数时,和会减少。如果当前得到的和是个负数,那么这个和在接下来的累加中应该抛弃并重新清零,不然的话这个负数将会减少接下来的和。
 
解法一:穷举遍历,我们先用最简单的方法,把所有的连续子数组列出来,然后计算最大连续子数组的和,设置两个变量i和j为子数组的边界,这两个变量都要遍历整个数组,然后还需要一个下标来遍历整个子数组求和,总的复杂度是O(n^3),代码如下:
int MaxSubSum(int *arr,int n)
 2 {
 3     int max = -INFINITE;
 4     int sum = 0;
 5     for (int i = 0 ; i < n ; i++)
 6     {
 7         for (int j = i ; j < n ; j++)
 8         {
 9             for (int k = i ; k <= j ; k++)
10             {
11                 sum += arr[k];
12             }
13             if (sum > max)
14             {
15                 max = sum;
16             }
17         }
18     }
19     return max;
20 }

  对解法一改进一下,我们发现不需要再使用k去遍历子数组,因为每次j移动都会产生新的子数组,所以每次j移动时进行一下比较,就不会漏掉最大值所以去掉k,只要i和j移动就可以,去掉一层循环,时间复杂度降为O(n^2),代码如下:

int MaxSubSum(int *arr,int n)
 2 {
 3     int max = -INFINITE;
 4     int sum = 0;
 5     for (int i = 0 ; i < n ; i++)
 6     {
 7         sum = 0;
 8         for (int j = i ; j < n ; j++)
 9         {
10             sum += arr[j];
11             if (sum > max)
12                 max = sum;
13         }
14     }
15     return max;
16 }
17

  解法二:分治算法,跟二分查找的思想相似,我们可以分情况讨论这个问题是不是符合二分查找的条件

情况1:这个满足最大和的连续子数组全部在数组的左半部或者右半部,例如:左半部arr[i]……arr[n/2-1],或者右半部arr[n/2]……arr[j],这种情况下可以直接使用递归调用。

情况2:满足最大和的连续子数组跨过了本书组的中间点,例如连续子数组arr[i]……arr[n/2-1]arr[n/2]……arr[j],这种情况下只要在左半部寻找以arr[n/2-1]为结尾,在右半部寻找以arr[n/2]开头的两个满足最大和的连续子数组,求和,由于这个已知起点,只需要一个游标即可,所以复杂度是2*O(n/2)=O(n)。

综合以上的两种情况,满足分治算法的递归式:T(n)=2T(n/2)+O(n)=O(n*logn)。代码如下:

 1 int MaxSubSum(int *arr,int Left,int Right)
 2 {
 4     int MaxLeftSum,MaxRightSum;  //最大连续子数组没被中间的center切开时左右部分最大连续子数组之和
 6     int MaxLeftPartSum,MaxRightPartSum;//最大连续子数组被center切开时,最大子数组左右两部分的和
 8     int LeftPartSum,RightPartSum;  //临时变量,用于存储计算出来的和
 9     int Center,i; 
10 
11    
12     if(Left == Right)   //整个数组只有一个元素
13     {
14         if(arr[Left] > 0)   
15             return arr[Left];   
16         else   
17             return 0;
18     }
19 
20     //递归调用。分别计算左右子数组的最大和子数组。
21     //即假设最大和子数组没有被Center切割
22     Center = (Left+Right)/2;   
23     MaxLeftSum = MaxSubSum(arr,Left,Center);   
24     MaxRightSum = MaxSubSum(arr,Center+1,Right);   
25 
26     //假设最大和子数组被Center切开的情况
27     //那么需要从Center开始向两侧计算
28     MaxLeftPartSum = 0;   
29     LeftPartSum = 0;   
30     for(i = Center ; i >= Left; --i )   //从center向左边计算
31     {   
32         LeftPartSum += arr[i];   
33         if(LeftPartSum > MaxLeftPartSum)   
34             MaxLeftPartSum = LeftPartSum;   
35     }   
36     MaxRightPartSum = 0;   
37     RightPartSum = 0;   
38     for(i = Center+1 ; i <= Right ; ++i)  //从center向右计算
39     {   
40         RightPartSum += arr[i];   
41         if(RightPartSum > MaxRightPartSum)   
42             MaxRightPartSum = RightPartSum;   
43     }
44     //返回三者中的最大值。
45     return max(max(MaxLeftSum,MaxRightSum),MaxLeftPartSum+MaxRightPartSum);   
46 }

 解法三:动态规划思想,对于这个问题我们可以“从后往前”分析,我们考虑一下最后一个元素arr[n-1]与最大连续子数组的关系,有如下三种关系

             1.arr[n-1]单独构成最大子数组

      2.最大连续子数组以arr[n-1]结尾

      3.最大连续子数组跟arr[n-1]没关系,最大连续子数组在arr[0—n-2]范围内,转为考虑元素arr[n-2]

从上面我们可以看出,问题分解成三个子问题,最大子数组就是这三个子问题的最大值,现在假设:

      1.以arr[n-1]为结尾的最大子数组和为End[n-1]

      2.在[0-n-1]范围内的最大子数组和为All[n-1]

如果最大连续子数组跟最后一个元素无关,即最大和为All[n-2](存在范围为[0-n-2]),则解All[n-1]为三种情况的最大值,即All[n-1] = max{ arr[n-1],End[n-1],All[n-2] }。从后向前考虑,初始化的情况分别为arr[0],以arr[0]结尾,即End[0] = arr[0],最大和范围在[0,0]之内,即All[0]=arr[0]。根据上面分析,给出状态方程:All[i] = max{ arr[i],End[i-1]+arr[i],All[i-1] },代码如下:

/* DP base version*/
#define max(a,b) ( a > b ? a : b)
 
int MaxSubSum(int * arr, int size)
{
    int End[30] = {-INF};
    int All[30] = {-INF};
    End[0] = All[0] = arr[0];
 
    for(int i = 1; i < size; ++i)
    {
        End[i] = max(End[i-1]+arr[i],arr[i]);
        All[i] = max(End[i],All[i-1]);
    }
    return All[size-1];
}

  我们还可以由动态规划得到另一种O(n)的实现方式,仔细看上面动态规划方案的代码,End[i] = max{arr[i],End[i-1]+arr[i]},如果End[i-1]<0,那么End[i]=arr[i],什么意思?End[i]表示以i元素为结尾的子数组和,如果某一位置使得它小于0了,那么就自当前的arr[i]从新开始,且End[i]最初是从arr[0]开始累加的,所以这可以启示我们:我们只需从头遍历数组元素,并累加求和,如果和小于0了就自当前元素从新开始,否则就一直累加,取其中的最大值便求得解。

其实上面的方法虽说是从动态规划推导出来的,但是写完发现也是很直观的方法,最终的最终,这个问题转化为这样,求最大和,那就一直累加呗,只要大于0,就说明当前的“和”可以继续增大,如果小于0了,说明“之前的最大和”已经不可能继续增大了,就从新开始,如此这样。实现代码如下

#include<iostream>
using namespace std;
int maxsum(int *arr,int size)
{
	int max=-1000;
	int sum=0;
	for(int i=0;i<size;i++)
	{
		if(sum<0)
			sum=arr[i];
		else
			sum+=arr[i];
		if(sum>max)
			max=sum;
	}
	return max;
}

int main()
{
	int arr[8]={1,-2,3,10,-4,7,2,-5};
	int m=maxsum(arr,8);
	cout<<m<<endl;
	return 0;
}

  如果对问题进一步扩展一下,要求返回最大连续子数组的始末位置,到了这里也是比较容易实现的,我们知道,每当当前子数组和的小于0时,便是新一轮子数组的开始,每当更新最大和时,便对应可能的结束下标,这个时候,只要顺便用本轮的起始和结束位置更新始末位置就可以,程序结束,最大子数组和以及其始末位置便一起被记录下来了,代码如下:

/* 最大子数组 返回起始位置 */
void Maxsum_location(int * arr, int size, int & start, int & end)
{
    int maxSum = -INF;
    int sum = 0;
    int curstart = start = 0;  /* curstart记录每次当前起始位置 */
    for(int i = 0; i < size; ++i)
    {
        if(sum < 0)
        {
            sum = arr[i];
            curstart = i;     /* 记录当前的起始位置 */
        }else
        {
            sum += arr[i];
        }
        if(sum > maxSum)
        {
            maxSum = sum;
            start = curstart; /* 记录并更新最大子数组起始位置 */
            end = i;
        }
    }
}

  

 

本文的第三种思路参考自http://www.ahathinking.com/archives/120.html,题目还有很多其他解法和扩展练习,有兴趣的可以查看以上的参考链接。

 

 

转载于:https://www.cnblogs.com/coderchuanyu/p/3857312.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值