聪聪可可
解题思路
点分治。分别统计(各个点到根的距离%3)的值为0,1,2的个数,然后统计不在同一颗子树中余数相加再%3的值为0的个数x,因为两个人可以选同一个点,所以x+n即为路径为3倍数的点对的个数。概率即为(x+n)/(n*n)。
代码如下
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
inline int read(){
int res = 0, w = 0; char ch = 0;
while(!isdigit(ch)){
w |= ch == '-', ch = getchar();
}
while(isdigit(ch)){
res = (res << 3) + (res << 1) + (ch ^ 48);
ch = getchar();
}
return w ? -res : res;
}
template <typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans % lyd;
}
ll get_inv(ll b, ll mod){
return fpow(b, mod - 2, mod);
}
const int N = 20005;
struct T{
int r, w;
T(int r, int w): r(r), w(w){}
};
vector<T> g[N];
int rt, num, n, sum;
int siz[N];
bool vis[N];
void find_root(int x, int fa)
{
siz[x] = 1;
int max_son = 0;
for(int i = 0; i < g[x].size(); i ++){
int r = g[x][i].r;
if(r == fa || vis[r]) continue;
find_root(r, x);
siz[x] += siz[r];
max_son = max(max_son, siz[r]);
}
max_son = max(max_son, sum - siz[x]);
if(max_son < num){
num = max_son;
rt = x;
}
}
int d[N], b[N];
vector<int> vec;
void get_dis(int x, int fa, int s)
{
for(int i = 0; i < g[x].size(); i ++){
int r = g[x][i].r;
if(r == fa || vis[r]) continue;
d[r] = (d[x] + g[x][i].w) % 3, b[r] = s;
vec.push_back(r);
get_dis(r, x, s);
}
}
int cnt[N][3], ans;
int e[3];
void calc()
{
memset(cnt, 0, sizeof(cnt));
memset(e, 0, sizeof(e));
for(int i = 0; i < vec.size(); i ++){
cnt[b[vec[i]]][d[vec[i]] % 3] ++;
e[d[vec[i]] % 3] ++;
}
for(int i = 0; i < vec.size(); i ++){
int t = d[vec[i]] % 3;
for(int j = 0; j < 3; j ++){
if((t + j) % 3 == 0)
ans += e[j] - cnt[b[vec[i]]][j];
}
}
}
void dfs(int x)
{
num = n;
find_root(x, 0);
int t = rt;
vis[t] = true;
vec.clear();
vec.push_back(t);
d[t] = b[t] = 0;
for(int i = 0; i < g[t].size(); i ++){
int r = g[t][i].r;
if(!vis[r]){
d[r] = g[t][i].w % 3, b[r] = r;
vec.push_back(r);
get_dis(r, t, r);
}
}
calc();
for(int i = 0; i < g[t].size(); i ++){
int r = g[t][i].r;
if(!vis[r]){
sum = siz[r];
dfs(r);
}
}
}
int main()
{
scanf("%d", &n);
for(int i = 1; i < n; i ++){
int x, y, w;
scanf("%d%d%d", &x, &y, &w);
g[x].push_back(T(y, w));
g[y].push_back(T(x, w));
}
sum = n;
dfs(1);
int b = n * n;
ans += n;
int w = __gcd(ans, b);
printf("%d/%d\n", ans / w, b / w);
return 0;
}