遗传算法求解最优值

本文介绍了遗传算法的基本原理,包括模拟生物进化的过程,如选择、交叉和变异,以及如何解决优化问题。通过一个二维函数的优化实例,展示了遗传算法如何通过编码、交叉变异和选择策略寻找最优解。遗传算法在面对复杂问题时,通过反复迭代和适应度评估,最终找到接近最优解的解决方案。
摘要由CSDN通过智能技术生成

1、遗传算法介绍

遗传算法,模拟进化论的自然选择生物进化构成的计算模型,一种不断选择优良个体的算法。谈到遗传,想想自然界动物遗传是怎么来的,自然主要过程包括染色体的选择,交叉,变异,这些操作后,保证了以后的个基本上是最优的,那么以后再继续迭代这样下去,就可以一直最优了。

2、解决的问题

遗传算法能解决的问题很多了,但是遗传算法主要还是解决优化类问题,尤其是那种不能直接解出来的很复杂的问题,而实际情况通常也是这样的。

本部分主要为了了解遗传算法的应用,选择一个复杂的二维函数来进行遗传算法优化,函数显示为y=10*sin(5*x)+7*abs(x-5)+10,这个函数图像为:

当然函数你还可以任意假设和编写,只要符合就可以。要求它的最大值(这个貌似可以,很容易写出来----如果再复杂一点估计就不行了)       这类问题如果用遗传算法或者其他优化方法就很简单,举个例子吧,我把x等分成100万份,再一下子都带值进去算,求出对应的100万个y的值,再比较他们的大小找到最大值不就可以了吗,很笨吧,人算是不可能的,但是计算机可以。遗传算法也是很笨的一个个搜索,只不过家里一点什么了,就是人为的给它算的方向和策略,让它有目的的算,这也就是算法了。

3、如何开始?

首先是选择个体了。遗传算法中有多个个体,这样相互结合的机会才多,产生的后代才会多种多样,才会有更好的优良基因,有利于种群的发展。那么算法也是如此,当然个体多少是个问题,一般来说20-100之间我觉得差不多了。那么个体究竟是什么呢?在我们这个问题中自然就是x值了。其他情况下,个体就是所求问题的变量,这里我们假设个体数选100个,也就是开始选100个不同的x值,不明白的话就假设是100个猴子吧。好了,现在有了100个猴子组成的一个种群,那么这个种群应该怎么发展才能越来越好?说到这,我们想想,如何定义这个越来越好呢?这个应该有一个评价指标吧。在我们的这个问题中,好像是对应的y值越大越好是吧。我们甚至可以给他们拍个名来决定哪些好哪些不好。我们把这个叫做对于个体的适应度,这应该算是算法的后半部分才对。

4、编码

首先明白什么是编码?为什么要编码?如何编码?

好,什么是编码?其实编码就是把自变量(x)换一下形式而已,转换为计算机能够识别的方式,在这个形式下,更容易操作其他过程(比如交叉,变异什么的)而已。一般的编码都是二进制编码,自然数编码,矩阵编码等等,二用的最多的可以说是二进制编码,感觉这和人体DNA,基因的排列很相似。想想DNA怎么排的?不就是在两条长链上一对一排的吗?那么什么是二进制编码?很简单,就是1,0,1,0对应的来回组合排列而已。比如:1100100010, 0011001001等等,这些都是位数长度为10的二进制编码。那么就又来一个问题,怎样去扩大这个精度呢?如果要保持0-5不变的话,只能增加位数了,把9位编码编程10位,20位,100位,哇,够大了吧,变成100个0,1组合,很恐怖吧,事实上,究竟是多少要视情况而定,一般20位左右感觉就可以了,虽然说越大越好,但是太大了消耗内存,速度慢了,不值。

5、关于交叉与变异

基因发生突变就叫变异,有了编码的概念,那就在编码基础上来说变异(某一位编码变了)。最简单的变异是单个点的变异。现在以10位长的编码来说,比如把x=3编码一下,随便假设为11000 10010吧,好了,在变异操作时,假设第5位变异了(0变1· 1变0),那么这个时候变成什么了?那肯定不是3了,是多少是肯定可以反算回去的,这里懒得算了,就假设为3.213吧,发没发现,这样一来,x是不是变了?既然变了就好啊,带到原函数(适应度函数)里面比较这两个x值对应的哪个y值大一写,如果后面变异后的大一些是不是就是说产生了好的变异啊,就可以在下一次个体选择的时候选择它了。那么想想很多x来一起变异会怎么样呢?肯定会生成很多很多的解吧,反复这么做会怎么样呢?只要每次都保留最优解的话,我来个循环100万次,也总能找到解吧,当然这么多次得花多久,也不太合适,这还只是一个点位在进行变异,若果每次我让多个点位变异呢?哇,又不可思议了,变化更大了吧。当然,变异不止如此,更多的去看专业的论文吧。知道了变异是干什么的,剩下的都好说了,好了,这还是变异,想想自然界遗传中除了变异还有什么?交叉吧,那么交叉

遗传算法是一种优化算法,用于求解最优问题。以下是一个简单的遗传算法的MATLAB代码示例: ```matlab % 遗传算法参数设置 populationSize = 100; % 种群大小 chromosomeLength = 10; % 染色体长度 mutationRate = 0.01; % 变异率 % 初始化种群 population = rand(populationSize, chromosomeLength) > 0.5; % 迭代执行遗传算法 for generation = 1:100 % 计算适应度函数 fitness = calculateFitness(population); % 选择操作 selectionProbability = fitness / sum(fitness); parents = selectParents(population, selectionProbability); % 交叉操作 offspring = crossover(parents); % 变异操作 mutatedOffspring = mutate(offspring, mutationRate); % 更新种群 population = mutatedOffspring; end % 计算适应度函数的函数定义 function fitness = calculateFitness(population) % 在这里计算适应度函数 end % 选择操作的函数定义 function parents = selectParents(population, selectionProbability) % 在这里根据选择概率选择父代个体 end % 交叉操作的函数定义 function offspring = crossover(parents) % 在这里执行交叉操作产生子代个体 end % 变异操作的函数定义 function mutatedOffspring = mutate(offspring, mutationRate) % 在这里执行变异操作产生变异个体 end ``` 需要根据具体问题定义适应度函数、选择操作、交叉操作和变异操作的具体实现方法。以上代码只是一个简单的示例,需要根据具体问题进行修改和完善。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值