遗传算法参数寻优

遗传算法原理:(自编算法)

仿照达尔文的那句话“物竞天择,适者生存”

学习代码:寻优算法(1)-------遗传算法(GA)附Matlab代码(copy可用)-CSDN博客

  • 种群初始化:不能对问题空间参数直接处理,需通过特定的编码如实数编码、位串编码、结构式编码等,把问题的可行解转换成遗传空间的染色体或个体

  • 适应度评估:判断种群个体好坏,通常用目标函数变换得到

  • 选择:选择更适合生存者,淘汰劣势者。适应度越高越容易被选中,选择操作方式常见的有轮盘赌法、锦标赛法等

  • 交叉:下一代获得父母的基因片段,以得到更加优良的基因。

  • 变异:光靠父母的基因不一定能够生存下来,环境等影响会造成基因的变异,使得其能跳出父母基因的限制,得到更适合生存的基因。

  • 经过这样一轮轮的选择,优良的基因(自变量)就被选择出来了。

GEN是当前代数;M是种群规模,i代表种群数量

初始化种群:initpop.m

%初始化种群大小
%输入变量:
%popsize:种群大小
%chromlength:染色体长度-->>转化的二进制长度
%输出变量:
%pop:种群
function pop=initpop(popsize,chromlength)
pop = round(ran
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值