常用单词3000 php,常用英语单词大全,英语最常用单词3000个。

常用英语100个单词

比如,蔬菜啊,水果啊,衣服啊,文具啊,等等的 名词,形容词.一些常用的。阿拉伯半岛 Arabia 阿什兰 Ashland 啊 ah 啊哈 aha 癌症 cancer 爱 love 安静的 silent 。 全部;所有的 all 陡峭的,险峻的 steep 豆腐 tofu 独特的 unique 独自地 alone 妒忌的 。

英语中最常用的300个单词

我要带音标的汉字的 最好还带解释 我要常用的啊!!!!!! 要是我满意我。

如题,求助问题补充:生活方面的,最好能在生活中找到,用到的

【日常英语单词词汇】

百词斩英语最常用3000词 有哪些?

5000个英语单词

植物,比如星期、月份、动物有谁能提供一些分类的常用英语单词不好意思哦。

7d9d1a4e4728bf9259f096d8817e45ae.png

主要是考试中常出现的单词,能对付中考,谢谢咯~

3000个英语常用单词

有80%是在这3000~4000个单词里边的!~我想背 但是又不知道哪些是? 可以。好的话再追加100分 爸爸给我布置的任务求各位大哥哥大姐姐了

3000个高频单词有哪些?

1 a a.一,一个,一只,一件. 2.a bit of 少量(的),一点 3.a few of 有些,几个 4 。 62 all a. 所有的,全部的; ad. 全部,全然; int. 全部,全体,一切 63 all kinds of 各种。

英语最常用的1500个单词

1. acceptable可接受的 合意的2. accurate正确的 精确的3. active 积极的 能起作用的4. additional 另外的 额外的 附加的5. adequate 适当的 足够的6. aggressive 敢做敢为的 。

61e9c8389157a99e5ccbd32417f6e29a.png

100 个常用英语单词覆盖了50 %的书面语言。学会英语最常用的1000 个词 ,就能理解任何一篇规范文字 80. 5 %的内容; 学会常用的2000 个词就能理解约89 %的内容; 。

常用英语单词(不少于3000)带翻译

照片) wall(墙壁) floor(地板) yes(是.时候) do homework (做作业) watch 。 math(数学) Chinese(语文) English(英语) P;妈妈mom 妈妈(口语)man男人。

常用的英语单词(不要少于3000个)带翻译

我现在在学英语,想从学单词下手。 主要是应付高考呀。

f7ed5431243310387bea10739df4a843.png

我是要背300个英语单词1.不要自己去打字就显示出英语的那种网站2.不要Hi。.

1.a 2.come3.the 4.yes 5.no 6.bus 7.car 8.cat 9.dog 10apple 11.banana 12.thanks 13。. 94black 95back 96man 97woman 98.old 99.young 100.bye您慢慢看吧,绝对常用,。

英语最常用的1500个单词,哪位大哥知道啊?帮帮忙啊,谢谢了!

029641e32aaeb436fc61fcadcaab67fe.png

<think>好的,我现在需要解决用户的问题:如何用Python从Excel文件中提取文本并筛选出其中的名词和形容词。首先,我得理清楚整个流程,分步骤思考。 首先,用户的需求是从Excel文件中提取文本,然后从中筛选出名词和形容词。这意味着我需要处理Excel文件的读取、文本处理以及词性标注这几个主要步骤。 第一步,读取Excel文件。Python中常用的库有pandas和openpyxl。pandas的read_excel函数可以直接读取Excel文件,方便将数据转为DataFrame处理。需要确保用户已经安装了必要的库,比如pandas、openpyxl。可能需要提醒用户安装这些库,如果尚未安装的话。 第二步,提取文本。假设用户的Excel文件中有多个列,但用户需要处理的是特定的文本列。可能需要用户指定列名,或者默认处理所有文本类型的列。例如,用户的数据可能在某一列名为“内容”的列中,需要提取该列的所有文本内容,合并成一个大的文本字符串,或者逐条处理。 第三步,分词和词性标注。中文分词需要使用分词库,比如jieba,它支持词性标注功能。需要导入jieba并进行分词,同时获取每个词的词性。例如,使用jieba.posseg模块来进行分词和词性标注,这样可以得到每个词及其对应的词性标签。 第四步,筛选名词和形容词。根据jieba的词性标注规则,名词通常标记为'n',形容词为'a'。需要遍历所有分好的词,筛选出词性以'n'或'a'开头的词。例如,“n”代表名词,“a”代表形容词,“ns”是地名,可能也需要根据需求调整,但用户可能只需要普通名词和形容词,所以可以筛选词性为'n'和'a'的词。 接下来,需要考虑代码的结构。可能需要先读取Excel文件,然后遍历每一行的文本,进行分词和词性标注,后收集结果。同时,可能需要处理Excel中的多个工作表,或者用户指定的特定工作表。 另外,需要考虑异常处理,比如文件路径是否正确,Excel文件是否损坏,以及是否有权限读取文件等。但用户可能更关注主要流程,这些细节可以在代码注释或提示中提及。 现在,整合这些步骤到Python代码中。例如,使用pandas读取Excel,然后应用分词函数到每一行,提取所需的词性。可能需要将结果保存到新的Excel文件或输出到控制台。 还需要考虑性能问题,如果Excel文件很大,逐行处理可能需要较长时间,但用户的问题可能不涉及大规模数据,所以暂时可以忽略性能优化,保持代码简洁。 后,测试代码是否可行。例如,使用一个示例Excel文件,包含一些中文文本,运行代码后检查是否正确地提取了名词和形容词。 可能的错误点包括:未正确安装库、Excel文件路径错误、列名不正确、分词词典未更新导致分词不准确等。需要提示用户根据实际情况调整列名和文件路径,并可能需要添加错误处理代码。 总结,整个流程分为读取Excel、提取文本、分词标注、筛选词性四个步骤,每个步骤对应相应的Python库和函数。接下来,将这些步骤写成代码示例,并解释每个部分的作用,确保用户能够理解并调整代码以适应自己的需求。</think>### 分步解决方案 #### 1. 安装依赖库 首先确保已安装以下Python库: ```bash pip install pandas openpyxl jieba xlrd ``` #### 2. 读取Excel文件 使用`pandas`读取Excel文件内容: ```python import pandas as pd # 替换为你的Excel文件路径 file_path = "input.xlsx" df = pd.read_excel(file_path, engine='openpyxl') # 假设文本在"内容"列,根据实际情况修改列名 text_column = "内容" texts = df[text_column].astype(str).tolist() # 转换为字符串列表 ``` #### 3. 分词与词性标注 使用`jieba`进行分词和词性标注: ```python import jieba.posseg as pseg def extract_words(texts): nouns = [] adjectives = [] for text in texts: words = pseg.cut(text) # 带词性标注的分词 for word, flag in words: if flag.startswith('n'): # 名词(n、ns、nr等) nouns.append(word) elif flag.startswith('a'): # 形容词 adjectives.append(word) return nouns, adjectives nouns, adjectives = extract_words(texts) ``` #### 4. 保存结果 将结果保存到新Excel文件: ```python result_df = pd.DataFrame({ "名词": [", ".join(nouns)], # 合并为字符串 "形容词": [", ".join(adjectives)] }) # 保存到新文件 result_df.to_excel("output.xlsx", index=False, engine='openpyxl') ``` ### 完整代码示例 ```python import pandas as pd import jieba.posseg as pseg # 读取Excel文件 file_path = "input.xlsx" df = pd.read_excel(file_path, engine='openpyxl') texts = df["内容"].astype(str).tolist() # 提取名词和形容词 def extract_words(texts): nouns, adjectives = [], [] for text in texts: for word, flag in pseg.cut(text): if flag.startswith('n'): nouns.append(word) elif flag.startswith('a'): adjectives.append(word) return nouns, adjectives nouns, adjectives = extract_words(texts) # 保存结果 result_df = pd.DataFrame({ "名词": [", ".join(nouns)], "形容词": [", ".join(adjectives)] }) result_df.to_excel("output.xlsx", index=False, engine='openpyxl') ``` ### 说明 1. **依赖库**:`pandas`用于数据处理,`jieba`用于中文分词,`openpyxl`支持Excel读写[^2]。 2. **词性标注规则**:`jieba`中名词标记以`n`开头(如`n`普通名词、`ns`地名),形容词以`a`开头[^1]。 3. **扩展性**:若需处理多列文本,可修改`texts = df["内容"].tolist()`中的列名。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值