数据结构与算法之美学习笔记:B+树(第48讲)

一、解决问题的前提是定义清楚问题

通过对一些模糊需求进行假设,来限定要解决问题的范围

根据某个值查找数据,比如 select * from use where id=1234;
根据区间值来查询某些数据比如 select * from use where id > 1234 and id < 2345

性能方面的需求,我们主要考察时间和空间两方面,也就是执行效率和存储空间

执行效率:我么你希望通过索引,查询数据的效率尽可能的高;
存储空间方面我们希望索引不需要消耗太多的内存空间

二、尝试用学过的数据结构解决这个问题

支持快速查询、插入等操作的动态数据结构,我们已经学过散列表、平衡二叉树、跳表

这样看来,跳表是可以解决这个问题,实际上,数据库索引所用到的数据结构跟跳表非常相似,叫做B+树
它是通过跳表演化雇来的,而非跳表

三、改造二叉查找树来解决这个问题

1、实现代码

/**
 * 这是 B+ 树非叶子节点的定义。
 *
 * 假设 keywords=[3, 5, 8, 10]
 * 4 个键值将数据分为 5 个区间:(-INF,3), [3,5), [5,8), [8,10), [10,INF)
 * 5 个区间分别对应:children[0]...children[4]
 *
 * m 值是事先计算得到的,计算的依据是让所有信息的大小正好等于页的大小:
 * PAGE_SIZE = (m-1)*4[keywordss 大小]+m*8[children 大小]
 */
public class BPlusTreeNode {
  public static int m = 5; // 5 叉树
  public int[] keywords = new int[m-1]; // 键值,用来划分数据区间
  public BPlusTreeNode[] children = new BPlusTreeNode[m];// 保存子节点指针
}

/**
 * 这是 B+ 树中叶子节点的定义。
 *
 * B+ 树中的叶子节点跟内部结点是不一样的,
 * 叶子节点存储的是值,而非区间。
 * 这个定义里,每个叶子节点存储 3 个数据行的键值及地址信息。
 *
 * k 值是事先计算得到的,计算的依据是让所有信息的大小正好等于页的大小:
 * PAGE_SIZE = k*4[keyw.. 大小]+k*8[dataAd.. 大小]+8[prev 大小]+8[next 大小]
 */
public class BPlusTreeLeafNode {
  public static int k = 3;
  public int[] keywords = new int[k]; // 数据的键值
  public long[] dataAddress = new long[k]; // 数据地址

  public BPlusTreeLeafNode prev; // 这个结点在链表中的前驱结点
  public BPlusTreeLeafNode next; // 这个结点在链表中的后继结点
}

2、实现步骤

3、实现思路

分裂合并

4、删除操作的例子

四、总结引申

1、每个节点中子节点的个数不能超过m,也不能小于m/2
2、根节点的子节点个数不可超过m/2,这是一个例外
3、M叉树只存储索引,并不真正存储数据,这个有点类似跳表
4、通过链表将叶子阶段串联在一次,这样可以方便区间查询
5、一般情况下,根节点会被存储在内存中,其他节点存储在磁盘中

转载于:https://www.cnblogs.com/luoahong/p/10485217.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值