贪心算法-单源最短路径

算法思想:贪心算法

实际问题:单源最短路径

编程语言:Java


问题描述

  单源最短路径算法,又称迪杰斯特拉算法。其目的是寻找从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。

算法构造

相关解释

  • 观测域:假设起点为v点,观测域便为v点的四周,即v的所有邻接点;
  • 点集 V:图中所有点的集合;
  • 点集 S:已经找到最短路径的终点集合;
  • 数组 D:存储观测域内能观测到的最短路径,算上起点一共 n 个数值。比如 D[k] 对应在观测域中能观测到的,到顶点 k 的最短路径;
  • 邻接矩阵 a:存储着有权图中的边的信息,是一个二维数组。比如 a[1][2] = 5 表示在有权图中,点 1 和点 2 之间有边,且边的权值为 5。如果两点之间没边,则用负数或则无穷大(∞)表示。

算法步骤

  • 第一步:初始化点集 S,将起点 v 收入 S 中。初始化数组 D:D[k] = a[v][k];
  • 第二步:找寻次短路径。即查找数组 D,找出观测域中最短路径(v, j):D[j] = min(D[k] | k 不属于 S)。将点 j 加入点集 S 中;
  • 第三步:将 j 的邻接点并入观测域,即用 j 的邻接点更新数组 D;
  • 第四步:不断重复第二步和第三步,直到节点全部压入 S 中为止。

注:贪心算法的思想主要就体现在第二步和第三步之中。

Java 代码

  本代码求解的是无向有权图的最短路径,如果想求有向有权图的最短路径,则只需要将无向图的邻接矩阵改为有向图的邻接矩阵即可。

import java.util.Scanner;

public class SSSP
{
    public static void main(String[] args)
    {
        Scanner input = new Scanner(System.in);
        
        System.out.print("请输入图的顶点和边的个数(格式:顶点个数 边个数):");
        int n = input.nextInt(); //顶点的个数
        int m = input.nextInt(); //边的个数
        
        System.out.println();
        
        int[][] a = new int[n + 1][n + 1];
        //初始化邻接矩阵
        for(int i = 0; i < a.length; i++)
        {
            for(int j = 0; j < a.length; j++)
            {
                a[i][j] = -1; //初始化没有边
            }
        }
        
        System.out.println("请输入图的路径长度(格式:起点 终点 长度):");
        //总共m条边
        for(int i = 0; i < m; i++)
        {
            //起点,范围1到n
            int s = input.nextInt();
            //终点,范围1到n
            int e = input.nextInt();
            //长度
            int l = input.nextInt();
            
            if(s >= 1 && s <= n && e >= 1 && e <= n)
            {
                //无向有权图
                a[s][e] = l;
                a[e][s] = l;
            }
        }
        
        System.out.println();
        
        //距离数组
        int[] dist = new int[n+1];
        //前驱节点数组
        int[] prev = new int[n+1];
        
        int v =1 ;//顶点,从1开始
        dijkstra(v, a, dist, prev);
    }
    
    /**
     * 单源最短路径算法(迪杰斯特拉算法)
     * @param v 顶点
     * @param a 邻接矩阵表示图
     * @param dist 从顶点v到每个点的距离
     * @param prev 前驱节点数组
     */
    public static void dijkstra(int v, int[][] a, int[] dist, int[] prev)
    {
        int n = dist.length;
        /**
         * 顶点从1开始,到n结束,一共n个结点
         */
        if(v > 0 && v <= n)
        {
            //顶点是否放入的标志
            boolean[] s = new boolean[n];
            
            //初始化
            for(int i = 1; i < n; i++)
            {
                //初始化为 v 到 i 的距离
                dist[i] = a[v][i];
                //初始化顶点未放入
                s[i] = false;
                //v到i无路,i的前驱节点置空
                if(dist[i] == -1)
                {
                    prev[i] = 0;
                }
                else
                {
                    prev[i] = v;
                }
            }
            
            //v到v的距离是0
            dist[v] = 0;
            //顶点放入
            s[v] = true;
            
            //共扫描n-2次,v到v自己不用扫
            for(int i = 1; i < n - 1; i++)
            {
                int temp = Integer.MAX_VALUE;
                //u为下一个被放入的节点
                int u = v;
                
                //这个for循环为第二步,观测域为v的观测域
                //遍历所有顶点找到下一个距离最短的点
                for(int j = 1; j < n; j++)
                {
                    //j未放入,且v到j有路,且v到当前节点路径更小
                    if(!s[j] && dist[j] != -1 && dist[j] < temp)
                    {
                        u = j;
                        //temp始终为最小的路径长度
                        temp = dist[j];
                    }
                }
                
                //将得到的下一节点放入
                s[u] = true;
                
                //这个for循环为第三步,用u更新观测域
                for(int k = 1; k < n; k++)
                {
                    if(!s[k] && a[u][k] != -1)
                    {
                        int newdist=dist[u] + a[u][k];
                        if(newdist < dist[k] || dist[k] == -1)
                        {
                            dist[k] = newdist;
                            prev[k] = u;
                        }
                    }
                }
            }
        }
        
        for(int i = 2; i < n; i++)
        {
            System.out.println(i + "节点的最短距离是:"
                + dist[i] + ";前驱点是:" + prev[i]);
        }

    }
}

运行结果

结果示例

转载于:https://www.cnblogs.com/wellcherish/p/11061411.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值