6.3.2 最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind...

最小支撑树树

前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法。给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小的。

本节中介绍三种算法求解图的最小生成树:Prim算法、Kruskal算法和Boruvka算法。其中Prim算法将介绍两种实现方法,一种是普通的贪心算法;而第二种算法是借助最大堆的贪心算法,其性能更高。Prim算法的思路是从任意一个顶点开始,逐步向已形成的MST子树中增加权值最小的边从而最终形成MST。Kruskal算法和Boruvka算法类似,都是向MST子树的一个分布森林中增加边来构建MST。

这三种算法都是贪心算法,有关贪心算法的讨论请参阅相关书籍。贪心算法的思想是选择当时最佳的路径。一般而言,贪心策略不一定能保证找到全局最优解,但是对最小支撑树问题来说,贪心策略能获得具有最小权值的生成树。

本节将使用前面章节中介绍的广义树来返回图的最小生成树。实现上述三个算法的类名称为MinimumSpanningTree

1 Prim算法

Prim算法可以说是所有MST算法中最简单的,比较适用于稠密图。以图中任意一个顶点S开始,选择与之相关连的边中权值最小的边加入到MST中,假设这条边的终点为T,则MST初始化为(S, T),称之为“当前MST”。接下来在剩余的边中选择与当前MST中s所有顶点相关连的边中权值最小的边,并添加到当前MST中。这一过程一直迭代到图中所有顶点都添加到MST中为止。

在迭代时,假设当前MST中顶点形成集合Vs,则对Vs中的每一个vi,遍历与其相邻的所有边,并找到权值最小的边。这一过程实现如下:

/*  Prim算法,求解图G的最小生成树
 * @param 输入s:最小生成树的树根
 * @return 函数返回时V,D,mst都重新赋值
 
*/
public  void Prim( int s){
     if(s < 0) 
         return;
     int nv = G.get_nv();
     //  初始化
     for( int i = 0; i < nv; i++){
        D[i] = Integer.MAX_VALUE;
        V[i] = -2;
         //  0 -- 没添加到树中
        G.setMark(i, 0);
    }
    
     //  对起点s,父节点为-1,距离为0
    V[s] = -1;
    D[s] = 0;
    G.setMark(s, 1);
     //  将起点添加到广义树中
    mst.addChild(0, s,  new ElemItem<Double>(D[s]));

     /*  在其余顶点中找到与当前MST最近的顶点v,并将顶点的父节点和
     * 顶点v添加到MST中。其中图的权值存放在节点v中。
     * 循环迭代,直至所有顶点都遍历一遍 
*/
     while( true){
         /* 获取与当前树距离最近的边,其终点为最近的顶点
         * 终点为最近顶点的父节点 
*/
        Edge E = Utilities.minNextEdge(G, V);
         // 如果边为空,函数返回
         if(E ==  nullreturn;
        System.out.println(E.get_v1() + " -- "
                + E.get_v2() + " -- "
                + G.getEdgeWt(E));
         //  E的起点赋值给V[E的终点]
        V[E.get_v2()] = E.get_v1();
         //  E的权值赋值给D[E的终点]
        D[E.get_v2()] = G.getEdgeWt(E);
         //  E的终点被访问过了
        G.setMark(E.get_v2(), 1);
         //  在最小生成树中添加边E对应的信息
        mst.addChild(E.get_v1(), E.get_v2(),
                 new ElemItem<Double>(D[E.get_v2()]));
    }
    
}

 

函数中对MinimumSpanningTree的数组V和D的值进行更新,V[i]的值表示最小支撑树中中顶点i的父顶点,D[i]表示顶点i与其父顶点V[i]之间边的权值。函数最终向当前对象的mst(最小支撑树)中添加顶点,最终形成以起始顶点S为根节点的广义树树结果(左子节点右兄弟节点树)。

 

 

如图所示,以顶点0为起点求解图中最小支撑树。按照程序流程,构造MST的详细过程如图(1~8)所示

 

 

 

以图做为测试并检验函数。起始顶点0,测试程序如下:

 

public  static  void main(String args[]){
    GraphLnk GL = 
        Utilities.BulidGraphLnkFromFile("Graph\\graph7.txt");
    MinimumSpanningTree MSTex =  new MinimumSpanningTree(GL);
    MSTex.Prim(0);
    MSTex.mst.ford_print_tree();
    System.out.println("各顶点的父节点:");
     for( int i = 0; i < MSTex.V.length; i++){
        System.out.print(MSTex.V[i] + ", ");
    }
    System.out.println("\n各顶点距其父节点距离:");
     for( int i = 0; i < MSTex.D.length; i++){
        System.out.print(( int)(MSTex.D[i]) + ", ");
    }
}

 

    程序运行结果如下:
0 -- 1 -- 4
0 -- 7 -- 8
7 -- 6 -- 1
6 -- 5 -- 2
5 -- 2 -- 4
2 -- 8 -- 2
2 -- 3 -- 7
3 -- 4 -- 9
9 节点,前序遍历打印:
|—— 0.0(0)
    |—— 4.0(1)
    |—— 8.0(7)
        |—— 1.0(6)
            |—— 2.0(5)
                |—— 4.0(2)
                    |—— 2.0(8)
                    |—— 7.0(3)
                        |—— 9.0(4)
各顶点的父节点:
-1, 0, 5, 2, 3, 6, 7, 0, 2, 
各顶点距其父节点距离:
0, 4, 4, 7, 9, 2, 1, 8, 2,

 

结果第一部分为各顶点添加到最小生成树mst中的顺序;第二部分为mst的前序遍历打印结果;最后一部分为各顶点在mst中的父节点以及与父节点形成的边在图中的权值。

2 基于优先队列的Prim算法

Prim算法的流程比较容易理解,算法可以在线性时间内找出图的MST。但是从实现过程可以发现,在遍历与顶点相邻的所有边寻找与当前MST最近的顶点时,需要进行循环判断,选择距离最近的边之后其余边的信息将被舍弃;在下次循环判断时这些舍弃的边又被再次参与“竞选”最近的边,这无疑带来了重复判断。

可以引入一个最小堆,堆中存放遍历过的边。在遍历与顶点相邻的所有边时,首先将连边添加到堆中,然后直接将堆顶的边取出并添加到MST中。这样就可以避免重复判断。算法的实现如下:

 

/*
     * 基于有线队列的Prim算法;
     * 需要利用最小堆结构,但是我们之前只设计了最大堆,
     * 所以将堆节点中用于表示大小关系的元素值乘以-1,
     * 作用等效于最小堆;堆节点元素为 EdgeElem。
     * @param 起始顶点s
     
*/
     public  void PrimPQ( int s){
         if(s < 0)  return;
         //  图顶点和图边个数
         int nv = G.get_nv();
         int ne = G.get_ne();
         //  堆最大为边的条数
        MaxHeap H =  new MaxHeap(ne);
        
         //  初始化
         for( int i = 0; i < nv; i++){
            D[i] = Integer.MAX_VALUE;
            V[i] = -2;
             //  0 -- 没添加到树中
            G.setMark(i, 0);
        }

         //  对起点s,父节点为-1,距离为0
        V[s] = -1;
        D[s] = 0;
        G.setMark(s, 1);
         //  将起点添加到广义树中
        mst.addChild(0, s,  new ElemItem<Double>(D[s]));
         //  初始化堆,将与起点相连的边都添加到堆中
         for(Edge E = G.firstEdge(s); G.isEdge(E); E = G.nextEdge(E)){
            D[E.get_v2()] = G.getEdgeWt(E);
            V[E.get_v2()] = s;
            H.insert( new ElemItem<EdgeElem>
                    ( new EdgeElem(E, -1 * G.getEdgeWt(E))));
        }
        H.printHeap();
        
         //  将堆顶元素删去并返回
         int v = -1; 
        EdgeElem PE =  null;
         while( true){
            v = -1;
             //  如果堆不为空
             while(H.topVal() !=  null){
                 //  删除并返回堆顶元素
                PE = (EdgeElem)(H.removeMax().elem);
                H.printHeap();
                v = PE.get_v2();
                 //  如果堆顶元素对应的顶点没有被访问,则退出循环
                 if(G.getMark(v) == 0) 
                     break;
                 //  否则表示没有找到下一个可添加到MST的顶点
                 else v = -1;
            }
            
             //  如果没有可继续添加的顶点了,函数返回
             if(v == -1) 
                 return;
            
             //  将得到的堆顶元素对应顶点重置为访问过
            G.setMark(v, 1);
            
             //  在最小生成树中添加边E对应的信息
            mst.addChild(PE.get_v1(), PE.get_v2(),
                     new ElemItem<Double>(D[PE.get_v2()]));
            
             //  继续将与v相连的、未经访问的边添加到堆中
             for(Edge w = G.firstEdge(v); G.isEdge(w); w = G.nextEdge(w)){
                 //  顶点尚未被访问过,并且不在堆中
                 if(G.getMark(w.get_v2()) == 0 
                        && D[G.edge_v2(w)] > G.getEdgeWt(w)){
                    D[G.edge_v2(w)] = G.getEdgeWt(w);
                    V[G.edge_v2(w)] = v;
                    H.insert( new ElemItem<EdgeElem>
                            ( new EdgeElem(w, -1 * G.getEdgeWt(w))));
                }
            }
            H.printHeap();
        }
    }

 

由于在前面章节中我们只讨论了最大堆,这里没有为PrimPQ算法特别设计最小堆,而是在函数中对最大堆来稍作改变来实现最小堆的功能:在向堆中添加边信息时,先将边的权值取相反数。

图中边的信息包括边的源点、终点和权值,由于基于连接表的图数据结构中没有这样的边数据结构,这里重新设计了边数据结构作为堆中元素项。其设计如下:

 

 

/*
 * 继承Comparable接口的EdgeElem类,其中包含一条边和这条边的权值
 
*/
public  class EdgeElem  implements Comparable{
    Edge e;
     int wt;
     //  构造函数
     public EdgeElem(Edge _e,  int _wt){
        e = _e;
        wt = _wt;
    }
     //  获取边的起点
     public  int get_v1(){
         return e.get_v1();
    }
     //  获取边的终点
     public  int get_v2(){
         return e.get_v2();
    }
     //  获取边的权值
     public  int get_wt(){
         return wt;
    }
     //  比较函数,比较对象为PrinElem的边的权值
     public  int compareTo(Object o) {
        EdgeElem other = (EdgeElem)o;
         if(wt > other.wt)  return 1;
         else  if(wt == other.wt)  return 0;
         else  return -1;
    }
    
     //  便于显示,返回边信息
     public String toString(){
         return "(" + e.get_v1() + ", "
                + e.get_v2() + "), " + wt;
    }
    
}

 

这里不对算法的详细过程进行分析,通过示示例程序并跟踪堆中元素项的变化来进行解释,读者可以自行分析算法流程。示例程序使用的图为。示例程序如下:

 

public  class PrimPQExample {
     public  static  void main(String args[]){
        GraphLnk GL = 
            Utilities.BulidGraphLnkFromFile("Graph\\graph7.txt");
        MinimumSpanningTree MSTex =  new MinimumSpanningTree(GL);
        MSTex.PrimPQ(0);
        MSTex.mst.ford_print_tree();
        System.out.println("各顶点的父节点:");
         for( int i = 0; i < MSTex.V.length; i++){
            System.out.print(MSTex.V[i] + ", ");
        }
        System.out.println("\n各顶点距其父节点距离:");
         for( int i = 0; i < MSTex.D.length; i++){
            System.out.print(( int)(MSTex.D[i]) + ", ");
        }
    }
}

 

    堆中元素项变化(添加和删除元素项时显示)以及最终MST树结果如下:
    
堆中元素旋转90度分层打印:
(0, 1), -4
    (0, 7), -8
堆中元素旋转90度分层打印:
(0, 7), -8
堆中元素旋转90度分层打印:
(0, 7), -8
    (1, 2), -8
堆中元素旋转90度分层打印:
(1, 2), -8
堆中元素旋转90度分层打印:
    (7, 8), -7
(7, 6), -1
    (1, 2), -8
堆中元素旋转90度分层打印:
(7, 8), -7
    (1, 2), -8
堆中元素旋转90度分层打印:
    (7, 8), -7
(6, 5), -2
    (6, 8), -6
        (1, 2), -8
堆中元素旋转90度分层打印:
    (7, 8), -7
(6, 8), -6
    (1, 2), -8
堆中元素旋转90度分层打印:
    (7, 8), -7
        (5, 4), -10
(5, 2), -4
        (5, 3), -14
    (6, 8), -6
        (1, 2), -8
堆中元素旋转90度分层打印:
    (7, 8), -7
(6, 8), -6
        (5, 3), -14
    (1, 2), -8
        (5, 4), -10
堆中元素旋转90度分层打印:
        (7, 8), -7
    (6, 8), -6
        (2, 3), -7
(2, 8), -2
        (5, 3), -14
    (1, 2), -8
        (5, 4), -10
堆中元素旋转90度分层打印:
    (7, 8), -7
        (2, 3), -7
(6, 8), -6
        (5, 3), -14
    (1, 2), -8
        (5, 4), -10
堆中元素旋转90度分层打印:
    (7, 8), -7
        (2, 3), -7
(6, 8), -6
        (5, 3), -14
    (1, 2), -8
        (5, 4), -10
堆中元素旋转90度分层打印:
    (7, 8), -7
(2, 3), -7
        (5, 3), -14
    (1, 2), -8
        (5, 4), -10
堆中元素旋转90度分层打印:
    (5, 3), -14
(7, 8), -7
    (1, 2), -8
        (5, 4), -10
堆中元素旋转90度分层打印:
    (5, 3), -14
(7, 8), -7
        (3, 4), -9
    (1, 2), -8
        (5, 4), -10
堆中元素旋转90度分层打印:
    (5, 3), -14
(1, 2), -8
    (3, 4), -9
        (5, 4), -10
堆中元素旋转90度分层打印:
    (5, 3), -14
(3, 4), -9
    (5, 4), -10
堆中元素旋转90度分层打印:
(5, 4), -10
    (5, 3), -14
堆中元素旋转90度分层打印:
(5, 4), -10
    (5, 3), -14
堆中元素旋转90度分层打印:
(5, 3), -14
堆中元素旋转90度分层打印:
9 节点,前序遍历打印:
|—— 0.0(0)
    |—— 4.0(1)
    |—— 8.0(7)
        |—— 1.0(6)
            |—— 2.0(5)
                |—— 4.0(2)
                    |—— 2.0(8)
                    |—— 7.0(3)
                        |—— 9.0(4)
各顶点的父节点:
-1, 0, 5, 2, 3, 6, 7, 0, 2, 
各顶点距其父节点距离:
0, 4, 4, 7, 9, 2, 1, 8, 2,

 

程序打印结果的第一部分为堆中边的动态变化情况;第二部分为生成的MST,其中根节点为算法的起始顶点;最后一部分表示的是各顶点的在MST中的父节点以及与父节点形成的边的权值。

3 Kruskal算法

Prim算法和基于优先队列的Prim算法的思路都是通过一次找出一条边添加到MST中,其中每一步都是要找到一条新的边并且关联到不断增长的当前MST。Kruskal算法也是一次找到一条边来不断构建MST,但是与Prim算法不同的是,它要找到 连接两棵树的一条边,这两棵树处于一个MST子树的分离的森林中,其中MST子树将不断增长。

算法由一个包括N棵(单个顶点组成的)树的森林开始。然后持续完成合并两棵树的操作(使用最短的边连接它们),直至只剩下一棵树,这棵树就是最终的MST树。这一过程等效于:首先将每个顶点各自划分至一个“等价类”,共N个等价类,每次选择最短的边将等价类进行合并,直至只剩下一个等价类为止。

为保证连接等价类边的权值最短,算法首先对图中所有边按照权值进行排序。按权值由小到大一次选择边,如果边的两顶点分别属于不同的等价类,则将这条边添加到MST并将这对顶点所属的等价类合并。本节最后一部分将介绍的UnionFind类将是一个理想的数据结构,可以实现等价类的合并(Union)并判断两个顶点是否属于同一个等价类(Find)。

基于以上的描述,Kruskal算法实现如下:

 

 

     /*
     * Krustral算法获取最小支撑树;算法借助UnionFind类
     
*/
     public  void Krustral(){
         int nv = G.get_nv();
         int ne = G.get_ne();
         //  获取图上的每一条边,并将边按照权值由大到小排序
        ITEM[] E = Utilities.GetEdgeSort(G);
         //  集合形式的等价类
        UnionFind UF =  new UnionFind(nv);
         //  待返回的EdgeElem数组
        R =  new EdgeElem[nv]; 
         int r = 0;
         for( int i = 0, k = 1; i < ne && k < nv; i++){
             //  获取一条边
            EdgeElem pe = (EdgeElem)(E[i].getElem());
             int v1 = pe.get_v1();
             int v2 = pe.get_v2();
             //  如果这条边的两个顶点不在同一个等价类中
             if(UF.find(v1) != UF.find(v2)){
                 //  则将这两个顶点合并,
                UF.union(v1, v2);
                System.out.println(UF.toString());
                 //  并将这条边添加到EdgeElem数组中
                R[r++] = pe;
            }
        }
    }

 

算法中调用函数GetEdgeSort获取图中所有边,并按照权值有小到大进行排序。GetEdgeSort函数首先将图中所有边取出,并以EdgeElem类的对象形式放置到ITEM类型的数组E中;然后调用第章中的任意一种排序算法对E中元素进行排序,其中EdgeElem类继承的copmareTo函数比较的是两个边对象的权值。这里选择快速排序算法,经过快速排序后E数组中的边按照权值有小到大顺序排列。算法实现过程如下:

 

 

/*
 * 获取图中所有边,并将这些边按照权值由大到小排序;
 * @param G    函数输入为图G
 * @return    返回为ITEM数组,每个元素为EdgeElem
 * 对象,元素按照权值排序;
 
*/
public  static ITEM[] GetEdgeSort(Graph G){
     if(G ==  nullreturn  null;
     //  首先将所有边存至ITEM数组
     int ne = G.get_ne();
     int nv = G.get_nv();
    ITEM[] E =  new ITEM[ne];
     int edge_cnt = 0;
     for( int i = 0; i < nv; i++){
         for(Edge e = G.firstEdge(i); G.isEdge(e); e = G.nextEdge(e)){
            E[edge_cnt++] =  new ITEM( new EdgeElem(e, G.getEdgeWt(e)));
        }
    }
     //  将ITEM数组排序,这里采用快速排序
    Sort st =  new Sort();
    st.quicksort(E, 0, E.length - 1);
     //  返回ITEm数组
     return E;
}

 

图(1~8)逐步实例了Kruskal算法的操作,从不连通的子树森林逐步演化为一棵树。边按其长度的顺序添加到MST中,所以组成此森林的顶点相互之间都通过相对短的边连接。

 

 

 

以上图为例调用Krustral函数,并跟踪UnionFind对象中等价类的变化过程。实例程序如下:

 

public  class KruskalExample {
     public  static  void main(String args[]){
        GraphLnk GL = 
            Utilities.BulidGraphLnkFromFile("Graph\\graph7.txt");
        MinimumSpanningTree MSTex =  new MinimumSpanningTree(GL);
        MSTex.Krustral();
        MSTex.mst.ford_print_tree();
        System.out.println("MST各条连接边为:");
         for( int i = 0; i < MSTex.R.length; i++){
            System.out.println(MSTex.R[i]);
        }
    }
}

 

    程序运行结果为:
    
0. -1,    1. -1,    2. -1,    3. -1,    4. -1,    5. -1,    6. -2,    7. 6,    8. -1,    
0. -1,    1. -1,    2. -2,    3. -1,    4. -1,    5. -1,    6. -2,    7. 6,    8. 2,    
0. -1,    1. -1,    2. -2,    3. -1,    4. -1,    5. 6,    6. -2,    7. 6,    8. 2,    
0. -1,    1. -1,    2. 6,    3. -1,    4. -1,    5. 6,    6. -3,    7. 6,    8. 2,    
0. 1,    1. -2,    2. 6,    3. -1,    4. -1,    5. 6,    6. -3,    7. 6,    8. 2,    
0. 1,    1. -2,    2. 6,    3. 6,    4. -1,    5. 6,    6. -3,    7. 6,    8. 6,    
0. 1,    1. 6,    2. 6,    3. 6,    4. -1,    5. 6,    6. -3,    7. 6,    8. 6,    
0. 6,    1. 6,    2. 6,    3. 6,    4. 6,    5. 6,    6. -3,    7. 6,    8. 6,    
MST各条连接边为:
(6, 7), 1
(2, 8), 2
(6, 5), 2
(5, 2), 4
(1, 0), 4
(3, 2), 7
(0, 7), 8
(3, 4), 9
   

 

结果第一部分为等价类变化过程,第二部分为MST中添加边的顺序。对等价类的显示结果这里先简要解释,详细分析请参见本节UnitFind部分以结果中第6行为例进行解释:

0. 1,1. -2,2. 6,3. 6,4. -1,5. 6,6. -3,7. 6,8. 6,

其中“.”之前前的数值表示顶点号;之后的数值表示了与该顶点属于同一个等价类的另一顶点,如果该值为负数,表示该顶点为所属等价类中的根。例如,顶点0对应值为1,而顶点1对应值为-2,则顶点0和1属于同一个等价类;顶点2, 3, 5, 7, 8对应值都为6,所以顶点2, 3, 5, 6, 7, 8属于同一个等价类。对应个顶点链接图为图中(6)

4. Boruvka算法

Boruvka算法是MST算法中最为古老的算法。类似于Kruskal算法,Bruvka算法也要向MST子树的森林添加边来构建MST;但是这是分步完成,每一步都增加多条MST边。在每一步中,会连接每一棵MST子树与另一棵子树的最短边,再将所有这样的边都增加到MST中。

本算法同样借助于UnionFind类。首先维护一个顶点索引数组,它可为各个MST子树找出最近的邻居。其次对图中每条边进行以下操作:

如果此边链接了同一子树上的两个顶点,则将其删除;

否则,检查此边所连接的两个子树之间的最近邻居距离,如果有则更新此距离。

遍历操作图中所有顶点后,最近邻居数组中则有了链接子树所需的边的信息。对于每个顶点索引,要完成一个合并操作(Union)使它与其最近邻居相连接。在下一步中,去除目的连接的MST子树中链接其他顶点对的所有更长边。算法实现如下:

 

 

/**
 * Boruvka 算法求解最小支撑树
 *
*/
public  void Boruvka(){
     int nv = G.get_nv();
     int ne = G.get_ne();

     //  获取图上的每一条边
    EdgeElem[] E = Utilities.GetEdge(G);
    EdgeElem[] B =  new EdgeElem[nv];
     //  集合形式的等价类
    UnionFind UF =  new UnionFind(nv);
     //  待返回的EdgeElem数组
    R =  new EdgeElem[nv]; 
     int r = 0;
     int N = 0;
     //  权值为无穷大的边
    EdgeElem _z =  new EdgeElem( null
                        Integer.MAX_VALUE);
     //  对每一个子树
     for( int e = ne; e != 0; e = N){
        System.out.print("h-\t");
        System.out.println(UF.toString());
         int h, i, j;
         //  权值初始化为 oo
         for( int t = 0; t < nv; t++) 
            B[t] = _z;
         //  对每一条边
         for(h = 0, N = 0; h < e; h++){
            EdgeElem pe = E[h];
             //  获取边的起点和终点
            i = UF.find(pe.get_v1());
            j = UF.find(pe.get_v2());
             //  起点和终点如果在同一个等价类中,则跳出本次循环
             if(i == j) 
                 continue;
             //  更新两棵树之间的最近距离
             if(pe.get_wt() < B[i].get_wt()) 
                B[i] = pe;
             if(pe.get_wt() < B[j].get_wt()) 
                B[j] = pe;
             //  N表示的是当前的子树个数
            E[N++] = pe;
        }
         //  对MST中每条边
         for(h = 0; h < nv; h++){
             //  B[h]是第h个顶点与其它树之间的最近距离的边
             if(B[h] != _z
                 //  如果B[h]的起点和终点不在同一个等价类中
                && UF.find(B[h].get_v1()) 
                        != UF.find(B[h].get_v2())){
                     //  将起点和终点放置到同一个等价类中
                    UF.union(B[h].get_v1(), B[h].get_v2());
                     //  并将这条边添加到EdgeElem数组中
                    R[r++] = B[h];
                }
        }
    }
}

 

函数中,E数组中首先保存途中所有顶点,调用函数GetEdge实现。数组B即为用于各个子树找出最近的邻居的顶点索引数组。算法初始状态下每个顶点分别属于不同等价类,然后按照上面算法描述中的方法找出各子树之间的最近连接边。

(1~8)示了算法的过程,其中(1~6)为第一次遍历过程,并得到三个子树形成的森林;(7~8)为第二次遍历过程,得到最终的最小支撑树。算法过程中跟踪每次遍历后等价类的变化。

 

以上图为例,对算法进行测试,实例程序如下:

 

public  class BoruvkaExample {
     public  static  void main(String args[]){
        GraphLnk GL = 
            Utilities.BulidGraphLnkFromFile("Graph\\graph7.txt");
        MinimumSpanningTree MSTex =  new MinimumSpanningTree(GL);
        MSTex.Boruvka();
        System.out.println("MST各条连接边为:");
         for( int i = 0; i < MSTex.R.length; i++){
            System.out.println(MSTex.R[i]);
        }
    }
}

 

    程序结果为:
    
    0. -1,    1. -1,    2. -1,    3. -1,    4. -1,    5. -1,    6. -1,    7. -1,    8. -1,    
    0. -2,    1. 0,    2. -2,    3. 2,    4. 2,    5. -2,    6. 5,    7. 5,    8. 2,    
    0. -3,    1. 0,    2. 0,    3. 2,    4. 2,    5. 0,    6. 5,    7. 5,    8. 2,    
    MST各条连接边为:
    (0, 1), 4
    (2, 8), 2
    (2, 3), 7
    (3, 4), 9
    (5, 6), 2
    (6, 7), 1
    (0, 7), 8
    (2, 5), 4

 

UnionFind类

UnionFind(合并查找)类可以实现等价类描述。假设一组元素V,其中元素分为n(n  |V|)等价类C1, C2, …, Cn。等价类满足一下性质:

每一个元素只能属于一个等价类;

等价类的同属关系具有传递性。

对于第二个性质,设顶点vivj属于同一等价类,顶点vkvj属于同一等价类,则顶点vivkvj都属于同一等价类

这里我们关心两个等价类的合并(Union)和任意元素所属等价类名称的返回(Find)。这里我们定义等价类的名称为等价类中某个特定的元素,由于每个元素只可能属于一个等价类,所以每个等价类的名称一定是唯一的,我们称之为这个等价类的根。合并两个等价类时,可以分别指定两个等价类中任意元素,然后将它们合二为一。

类的实现如下:

package Set;

/**
 *  等价关系(等价类)ADT的实现,这里的等价类表示数组中元素的是否是同一类。
 *  数组array表示的是下标序号关联。
 *
*/

public  class UnionFind {

   private  int[] array;

   /**
   *  构造函数,参数为array的长度
   *
*/
   public UnionFind( int numElements) {
    array =  new  int [numElements];
     //  数组中数值全为 -1
     for ( int i = 0; i < array.length; i++) {
      array[i] = -1;
    }
  }

   /**
   * union() 将两个集合合并为同一个集合,具体来说是将
   * 第一个集合的下标与第二个集合的下标合并到一个集合中。
   *  
@param  root1 第一个集合中的任意一个下标.
   *  
@param  root2 第二个集合中的任意一个下标.
   *  如果root1和root2分别不是两个集合的根,则首先将他们
   *  的根求出来
   *
*/
   public  void union( int root1,  int root2) {
       //  如果root1和root2分别不是两个集合的根,
      
//  则首先将他们的根求出来
      root1 = find(root1);
      root2 = find(root2);
       //  如果root2更高,则将root2设为合并后的根
     if (array[root2] < array[root1]) {
      array[root1] = root2; 
    } 
     else {
       //  如果一样高,减小其中一个的高度
       if (array[root1] == array[root2]) {
          array[root1]--; 
      }
       //  一样高或者root1更高,则将root1设为合并后的根
      array[root2] = root1;
    }
  }

   /**
   *  find() 寻找输入下标所在的集合的集合名
   *  
@param  x: 输入下标
   *  
@return  : 集合名
   *
*/
   public  int find( int x) {
       //  x是根,直接返回
     if (array[x] < 0) {
       return x; 
    } 
     else {
       /*  递归寻找x的根,在递归过程中将压缩x的索引深度,
       * 使得array[x]中保存根节点的下标
*/
      array[x] = find(array[x]);
       return array[x]; //  返回根节点
    }
  }
  
   /**
   * 返回所有的等价类
   
*/
   public String toString(){
      String s = "";
       for( int i= 0; i < array.length; i++){
          s += i+". "+array[i] + ",\t";
      }
       return s;
  }

}

 

其中似有成员为整型数组,数组下标对应实际元素的序号。例如array[i]的值包含第i个元素所属的等价类。find函数是递归函数,充分利用等价类的第二个性质。对于元素i,array[i]=j,包含两种情况:

如果j<0,则说明第i个元素为等价类的根,该等价类的名为i,则返回i;

如果j>0,则说明第i个元素与第j个元素属于同一个等价类,则递归调用函数find返回j的等价类名称,递归调用直至满足上一情况为止。

union函数将两个等价类合并,只需要分别指定两个等价类中的任意元素i, j,

如果这两个元素分别是等价类的名,则将array[j]←i

否则,首先调用函数find找到两个等价类的名称,然后再合并。

在本节讨论的Kruskal算法和Boruvka算法都利用了UnionFind类的union函数和find函数,读者可自行体会函数的功能。

 

转载于:https://www.cnblogs.com/luweiseu/archive/2012/07/14/2591446.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值