- 博客(236)
- 收藏
- 关注
原创 RabbitMQ架构实战3️⃣:金融级交易流水对账系统
🔹 Exchange 定义名称类型持久化说明direct✅主对账事件入口,接收 LocalTx 和 BankStmtdlx.recondirect✅死信交换机,用于异常路由💡 为什么用 Direct 而不是 Topic?路由键 = merchant_id,无需通配符Direct 性能更高,更适合高频金融场景🔹 队列命名规范与参数(以商户 M001 为例)属性值说明Queue NameDurabletrue必须持久化false手动管理Arguments必须开启:应对百万级堆积。
2026-02-15 19:03:56
113
原创 RabbitMQ架构实战2️⃣:分布式事务下的跨服务数据同步
本文探讨了基于RabbitMQ构建分布式事务下跨服务数据同步的解决方案。针对用户注册后需要异步触发多个下游系统初始化的场景,提出了完整的消息架构设计: 采用Publisher Confirm+持久化+手动ACK机制确保消息可靠传递 通过事件幂等性和独立队列设计处理重复消费和服务隔离问题 利用DLX死信队列实现失败告警和人工干预 设计了包含主交换机和多个服务专用队列的消息拓扑结构 详细定义了队列和交换机的关键配置参数 该方案实现了高可靠、可追溯、可恢复的消息驱动架构,能有效解决分布式系统中的最终一致性问题。
2026-02-15 09:36:23
149
原创 RabbitMQ架构实战
本文介绍了如何利用RabbitMQ实现电商订单全生命周期管理,重点解决订单超时取消、支付异步回调、库存释放等核心问题。通过TTL+DLX机制实现精准延迟触发,结合幂等消费、手动ACK确保消息可靠性。系统采用多队列架构,包括订单延迟队列、支付结果队列和库存操作队列,实现业务解耦。针对竞态条件、重复回调等难点,提出了状态机校验、分布式锁等解决方案,最终构建了一个高可靠、自动化的订单状态管理中枢。
2026-02-15 00:46:04
361
原创 Vue3核心语法回顾与Composition深入
Vue3核心语法与Composition API深入解析 本文介绍了Vue3的核心语法和Composition API使用要点,包含以下主要内容: 项目环境配置与创建 使用nvm管理Node版本 创建Vue3+TypeScript项目的基本流程 响应式计数器实现 使用ref创建响应式变量 模板自动解包特性 TypeScript类型标注实践 ref与reactive对比 ref包装对象的最佳实践 reactive直接解构的风险 响应式数据管理方案选择指南 TypeScript集成技巧 类型断言处理DOM事件
2026-02-14 15:22:14
414
原创 Redis持久化、内存管理、慢查询与发布订阅
Redis持久化与内存管理机制解析 Redis作为内存数据库,提供了RDB和AOF两种持久化方式: RDB通过定时快照实现全量备份,恢复快但可能丢失数据 AOF记录写命令日志,数据更安全但文件较大 内存管理方面,Redis提供8种淘汰策略: volatile类针对带过期时间的key allkeys类针对所有key 推荐allkeys-lru作为通用缓存策略 生产环境建议: 关键业务同时开启RDB和AOF 必须设置maxmemory限制 根据业务特点选择合适的淘汰策略
2026-02-13 23:57:18
542
原创 Redis基础与数据结构
Redis是一个开源的内存键值存储系统,常用于缓存、数据库和消息中间件。它支持多种数据结构(String、Hash、List等),提供极快的读写性能(10w+ QPS)和原子操作。核心优势包括内存操作、丰富的数据结构、持久化支持和分布式能力。典型应用场景包括缓存、排行榜、分布式锁等。文章详细介绍了Redis的定位、连接方法以及String和Hash类型的使用,并提供了Python代码示例和最佳实践建议,帮助开发者高效利用Redis解决实际问题。
2026-02-13 21:42:47
607
原创 MySQL8新特性
MySQL 8.0是MySQL数据库的重大升级版本,引入了多项核心改进:1)事务性数据字典将元数据存储在InnoDB表中,支持DDL事务操作;2)默认字符集改为utf8mb4,支持完整Unicode字符集;3)新增窗口函数功能,支持复杂数据分析,包括聚合函数(SUM/AVG等)、排名函数(ROW_NUMBER/RANK等)和分析函数(LAG/LEAD等)。这些特性显著提升了MySQL的数据处理能力、多语言支持和分析功能,使其更适合现代应用需求。
2026-02-13 17:11:58
517
原创 MySQL基础-DQL语句与多表查询
MySQL多表查询与聚合函数使用摘要 本文介绍了MySQL中的多表查询方法和聚合函数使用。主要内容包括: 多表查询类型: 笛卡尔积(未指定连接条件导致的全组合) 等值连接/内连接(基于相等条件连接) 非等值连接(使用非等操作符连接) 自连接(表与自身连接) 外连接(左/右/全外连接,包含不匹配行) 连接语法: 传统语法使用WHERE指定连接条件 SQL99标准使用JOIN...ON语法 外连接使用LEFT/RIGHT OUTER JOIN 聚合函数: 常用函数:AVG、COUNT、MAX、MIN、SUM 特
2026-02-12 17:35:04
541
原创 RabbitMQRPC与死信队列
RabbitMQ RPC与消息过期机制摘要 RabbitMQ可通过RPC模式实现同步请求-响应交互,适用于需要等待结果的场景(如查询积分、支付接口)。核心机制包括: 回调队列:客户端创建临时队列接收响应 Correlation ID:唯一标识请求与响应的匹配关系 非阻塞轮询:客户端通过process_data_events()异步等待响应 实现要点: 服务端需将结果发送至reply_to指定队列,并回传相同correlation_id 客户端需处理超时(建议5秒)和错误响应 适合异步长任务(如视频转码),但
2026-02-12 09:13:58
657
原创 rabbitMQ基础与发布/订阅模型
本文介绍了RabbitMQ消息队列的核心概念与应用场景,包括系统解耦、异步处理、流量削峰等典型使用场景。详细讲解了RabbitMQ的安装配置方法,并通过Python代码示例展示了生产者和消费者的基础实现。重点分析了消息确认机制(ACK)和持久化设置,确保消息可靠传递。文章强调在实际开发中需要根据业务需求合理选择消息队列,避免过度设计,同时注意处理幂等性和数据一致性等问题。
2026-02-11 09:34:17
563
原创 FastAPI依赖注入
FastAPI的依赖注入系统提供了一种灵活的方式来管理功能依赖,支持路径级、路由级和全局级三种作用域。通过Depends()函数可以注入函数或类依赖,实现参数验证、权限检查等逻辑。路径级依赖作用于单个API端点,路由级依赖共享于同一路由器下的所有路由,全局级依赖则应用于整个应用。此外,FastAPI支持嵌套依赖和类依赖,前者允许构建依赖链实现复杂逻辑,后者则通过面向对象方式封装状态和方法。这种分层设计的依赖注入机制有效提升了代码复用性和可维护性,同时保持处理逻辑的清晰性。
2026-02-10 23:52:56
545
1
原创 MySQL基础-DML、DQL语句
本文介绍了MySQL中DML和DQL语句的基本用法。DML语句包括INSERT(插入数据)、UPDATE(更新数据)和DELETE(删除数据)操作,并说明了TRUNCATE与DELETE的区别。DQL语句主要讲解SELECT查询,包括基本查询、算术表达式、列别名、去重操作和WHERE条件筛选。WHERE子句支持多种比较条件(=、<>、>、<等)和逻辑条件(AND、OR、NOT),以及特殊操作符(BETWEEN、IN、LIKE、IS NULL)。文章还介绍了通配符%和_的用法,为数据库
2026-02-09 15:18:18
589
原创 FastAPI中间件与路由
CORS(Cross-Origin Resource Sharing,跨源资源共享)是一种基于HTTP的机制,它允许服务器指示哪些其他源(域名、协议或端口)可以访问其资源,从而绕过浏览器的同源策略(Same-Origin Policy,SOP)限制。同源策略防止恶意网站通过脚本(如JavaScript)未经授权访问其他网站的数据,例如窃取用户的敏感信息。同源策略是浏览器的一种安全机制,限制了一个源(origin)的网页如何与另一个源的资源进行交互。APIRouter 核心作用。响应阶段(从内到外)
2026-02-08 01:17:20
242
原创 FastAPI使用tortoiseORM
摘要:Tortoise-ORM是一个异步Python ORM框架,基于Django ORM设计,适合FastAPI等异步应用。文章介绍了ORM的基本概念、Tortoise-ORM的配置方法(包括MySQL连接设置),以及使用Aerich进行数据库迁移的完整流程(初始化、生成迁移脚本、应用迁移等)。同时提供了详细的用户模型示例,展示字段类型定义和常用配置选项。
2026-02-07 23:46:06
641
原创 从 DOM 到事件再到异步
文章摘要:DOM基础与操作指南 DOM(文档对象模型)是HTML文档在内存中的树形表示,JavaScript通过DOM操作页面内容。核心要点包括: DOM树结构:由元素节点(HTML标签)和文本节点组成,document对象是树的入口。 元素获取方法:推荐使用querySelector和querySelectorAll,支持CSS选择器;传统方法如getElementById性能最优。 节点操作:可创建(createElement)、修改(textContent/innerHTML)、插入(appendCh
2026-02-06 00:20:17
604
原创 html布局
本文系统讲解了HTML布局的基础知识和CSS布局技术。首先介绍了文档流的概念,即元素默认的排列方式。然后详细解析了盒模型,说明元素如何被渲染为矩形盒子。接着讲解了display属性如何控制元素在文档流中的行为。第四部分介绍了定位(position)属性,包括五种定位方式及其应用场景。第五部分回顾了传统的浮动(float)布局技术。最后重点讲解了现代Flexbox弹性布局,包括容器和子项的各种属性配置。全文由浅入深,涵盖了从基础到现代的CSS布局核心知识。
2026-02-04 21:54:12
700
原创 MySQL基础-DDL语句
MySQL基础-DDL语句摘要 本文介绍了MySQL中数据定义语言(DDL)的基本操作和数据类型。主要内容包括: SQL语言分类:DQL(查询)、DML(操作)、DDL(定义)、DCL(控制)、TCL(事务) 数据库操作: 创建/删除数据库 查看/使用数据库 数据表操作: 创建/删除/修改表结构 添加/删除/修改列 MySQL数据类型: 整数、浮点、字符串、日期、二进制类型 各类型特点和使用场景 数据库约束: 主键、外键、唯一、非空约束 约束的添加和删除方法 本文为MySQL初学者提供了DDL语言的基础知识
2026-01-26 15:14:49
830
原创 异步编程asyncio
本文介绍了Python中异步编程的核心概念asyncio模块的使用。主要内容包括:1) 协程函数与协程对象的定义与执行方式,需通过事件循环运行;2) Task对象的创建和使用,用于并发调度协程;3) Future对象的底层实现,包括asyncio.Future和concurrent.futures.Future的区别;4) 如何将同步函数转换为异步函数;5) 实际案例演示asyncio与不支持异步的模块(如requests)的配合使用。文章通过代码示例详细说明了各种异步编程场景下的实现方法,包括协程的基本操
2026-01-16 17:27:53
579
原创 FastAPI基础
本文介绍了FastAPI的基础使用,包括环境配置、第一个应用创建、路径参数和查询参数处理、请求体使用以及参数验证。主要内容包括: 环境配置:使用conda创建Python3.12环境并安装FastAPI和Uvicorn 第一个FastAPI应用:创建基本应用结构,使用Uvicorn运行服务 路径参数处理:演示不同格式的路径参数接收方式 查询参数处理:展示必选和可选查询参数的定义 请求体使用:通过Pydantic模型定义请求数据结构 参数验证:包括原生类型验证和Query参数验证,涵盖默认值、必填、长度限制、
2026-01-15 22:22:25
1046
原创 FastAPI 参数接收类型总结
本文总结了FastAPI中常用的参数接收类型,包括路径参数、查询参数、请求体、表单数据和文件上传等。路径参数通过URL路径传递,查询参数通过?后的键值对传递,请求体用于POST/PUT请求的数据主体,表单数据用于传统HTML表单提交,文件上传则处理文件数据。文章提供了每种参数类型的后端代码示例和对应的前端请求方式(Python requests和cURL),并展示了如何混合使用多种参数类型。最后还附带了参数传递方式的示意图,帮助开发者快速理解FastAPI的参数处理机制。
2026-01-15 14:42:57
318
原创 异步编程实验--文件解析
本文介绍了Python异步编程中的常见错误及最佳实践。通过文件上传模拟案例,对比了四种实现方式:1)错误同步调用导致协程未执行;2)顺序执行失去并发优势;3)并发执行但顺序打印;4)使用asyncio.as_completed()无法获取任务ID。推荐方案采用带标识的并发处理,通过返回ID实现任务追踪。最后对比了asyncio.run()和threading.Thread()的核心区别,指出asyncio适用于I/O密集型场景,具有内存开销小、无GIL限制等优势。文章提供了清晰的代码示例和运行结果截图,帮助
2026-01-15 14:08:05
562
原创 麻将对对碰游戏:规则与模拟实现
麻将对对碰是一种基于麻将牌的趣味游戏,结合了抽牌、许愿和对子结算的机制。本文将介绍游戏规则,并通过 Python 实现一个模拟程序,帮助大家更好地理解游戏玩法。
2025-02-15 15:38:46
2728
原创 正视行为金融学
虽然本人一直对行为金融有偏见,认为行为金融是一门诞生就注定自我毁灭的学科,但是越来越多的学术实践运用了行为金融的理论,包括财大研究生开设的投资学一课,也涉及了行为金融的研究。还是来看看行为金融的一些基本概念和理论。
2025-01-07 21:56:33
1477
原创 Machine-learning the skill of mutual fund managers
我们利用机器学习方法证明,基金特征能够一贯地区分高绩效与低绩效的共同基金,无论是在费用之前还是之后。这种超额表现持续超过三年。基金动量和资金流是预测未来风险调整后基金表现最重要的因素,而基金持有的股票特征则不具备预测能力。在高情绪期间之后,预测性多空组合的回报更高。我们使用神经网络进行的估计使我们能够揭示情绪与资金流及基金动量之间的新颖且显著的交互效应。
2024-12-28 17:38:51
946
原创 Firm-Level Climate Change Exposure
我们开发了一种方法,该方法能够识别收益电话会议参与者对公司气候变化暴露的关注度。此方法采用了一种机器学习关键词发现算法,并捕捉与气候变化相关的机遇、物理和监管冲击所导致的暴露。这些衡量指标适用于2002年至2020年间来自34个国家的10,000多家公司。我们证明,这些衡量指标在预测与净零排放经济转型相关的重要实际结果方面是有用的,特别是颠覆性绿色技术中的就业创造和绿色专利活动,并且它们包含的信息已经在期权和股票市场中被定价。
2024-12-27 23:29:19
1163
原创 When can the market identify old news
是什么驱动了市场对旧闻反应的谜题?受关联忽视理论的启发,我们对金融专业人士进行了一项实验,结果显示即使是老练的投资者也难以识别出从多个来源重新组合而成的旧信息。我们使用来自彭博终端的1700万篇新闻文章的独特数据集来评估这一机制的市场影响。旧信息的重新组合比直接重印引发更大的价格变动和随后的反转。这种效应在新闻情绪、模糊性和投资者关注方面持续存在。此外,虽然对旧信息的整体反应会随着时间而减少,但对重新组合信息的差异反应却有所增加。
2024-12-26 01:59:01
1192
原创 Artificial intelligence, firm growth, and product innovation
我们研究了人工智能技术的使用及其经济影响。本文提出了一种基于员工简历来衡量企业层面的人工智能投资的新方法。我们的衡量标准揭示了各行业在人工智能投资上的显著增长。进行人工智能投资的企业在销售额、就业和市场估值方面经历了更高的增长率。这种增长主要通过增加的产品创新实现。(我们的结果在使用企业对大学人工智能毕业生供给的暴露程度作为工具变量时依然稳健。由人工智能驱动的增长集中在较大的企业中,并且与更高的行业集中度相关联。我们的研究结果强调,像人工智能这样的新技术可以通过产品创新促进增长并造就超级明星企业。
2024-12-24 01:05:25
1837
原创 Front-Page News The Effect of News Positioning on Financial Markets
本文利用彭博终端上新闻文章显要(“头条”)位置的外生变化,估计了新闻位置对价格发现速度的影响。头条文章在发布后的头10分钟内的交易量比同样重要的非头条文章高出240%,绝对超额回报率高176%。总体而言,头条文章中的信息在发布后的一个小时内完全融入价格。对于重要性相似的非头条信息,市场反应最终会趋同,但需要超过两天的时间才能完全反映在价格中。
2024-12-21 00:51:23
1074
原创 告别Zoo of Factor:净化因子分析中的数据挖掘与p值操纵
2011年,时任美国金融协会(AFA)主席的John Cochrane在他的主席演讲调侃了 zoo of factors,并提出了铿锵三问。这个问题引发了关于随机贴现因子(SDF)是否有稀疏表达(sparsity)的大讨论。由资产定价理论可知,SDF 可以被表示为一系列资产的线性组合(Hansen and Richard 1987):m=1−w′rm = 1-w'rm=1−w′r式中m为随机贴现因子,N维向量r表示资产的超额收益率,N维向量w表示它们在 SDF 中的权重。理论上我们可以用个股作为资产
2024-12-18 23:01:39
1130
原创 MEASURING INTANGIBLE CAPITAL WITH MARKET PRICES论文阅读
会计准则禁止将内部创造的知识和组织资本披露在公司的资产负债表上。因此,随着无形投资水平的提高,资产负债表表现出向下偏见的趋势变得更加严重。为了抵消这些偏见,研究人员必须通过资本化先前的研发和销售管理费用(SG&A)来估算这些表外无形资产的价值。在此过程中,必须假设一组资本化参数,即研发折旧率和代表长期资产的SG&A部分。我们利用企业退出时的市场价格来估计这些参数,并用它们来对1978-2017年间全面的公司面板数据中的无形资产进行资本化。
2024-11-25 00:53:10
1298
1
原创 Quality minus junk论文阅读
我们推导了一个具有时变增长、盈利能力和风险的动态资产定价模型。我们以封闭形式展示了市净率是如何线性地随着这些质量特性增加的。在我们呈现一般模型之前,为了获得一些直观理解,我们可以重写Gordon的增长模型来表达一只股票的市净值(P/B)如下:PB=profitability×payout ratiorequired return growth.\frac PB=\frac{\text{profitability}\times\text{payout ratio}}{\text{required retu
2024-11-20 01:49:09
1774
1
原创 Fundamental Analysis and Mean-Variance Optimal Portfolios论文阅读
本研究供了一个模型,该模型直接将基于基本面的比率与预期回报联系起来。然后,我们使用来自基于基本面模型的预期回报和协方差来形成均值-方差优化的基本面投资组合。在教科书中讨论的最常见的均值-方差框架内的方法(例如,Fabozzi 和 Markowitz, 2011;Qian 等, 2007;Chincarini 和 Kim, 2006;Grinold 和 Kahn, 2000)以及投资文献中的方法(例如,Allen 等, 2019;Clarke 等, 2016;Pachamanova 和 Fabozzi, 20
2024-11-17 01:51:19
1496
1
原创 ImportError: cannot import name ‘_format_load_msg‘ from ‘joblib.memory‘报错解决
报错解决
2024-10-30 22:41:15
603
原创 machine learning and the stock market 论文阅读
从业人员投入大量资源进行技术分析,而学术的市场有效理论则排除了技术交易的盈利能力。我们通过应用一系列多样化的机器学习算法来研究这个长期存在的难题。结果显示,投资者可以利用过去的价格找到盈利的技术交易规则,并且这种样本外的盈利能力随着时间逐渐减少,表明市场随时间变得更加有效。此外,我们发现进化遗传算法在不回避错误预测的态度上具有优势,使其在构建盈利策略方面优于那些严格专注于最小化损失的机器学习算法。在本文中,我们利用机器学习技术来寻找盈利的交易规则。
2024-10-28 11:43:10
1169
1
原创 Be careful when interpreting predictive models in search of causal insights SHAP系列论文
XGBoost 或 LightGBM 等灵活的预测模型是解决预测问题的强大工具。然而,它们本身并不是因果模型,因此在许多常见情况下,用 SHAP 解释它们将无法准确回答因果问题。除非模型中的特征是实验变化的结果,否则在不考虑混杂因素的情况下将 SHAP 应用于预测模型通常不是衡量用于为政策提供信息的因果影响的合适工具。SHAP 和其他可解释性工具可用于因果推理,并且 SHAP 已集成到许多因果推理包中,但这些用例本质上是明确的因果关系。
2024-10-26 22:00:48
901
原创 可解释机器学习的SHAP分析
本文首先介绍了 shapley 值的概念,通过一个LoL比赛的例子,拆解了 shapley 值的计算方法,并介绍了其中的数学方法。本文将对使用 Shapley 值解释机器学习模型的介绍, 主要举例讲解了Shapley用于各种机器学习算法的解释方法。研究已经严格证明,有且仅有一个ψ\psiψ方程同时满足上面三个性质,这就是shapley value。ψiNv1∣N∣!∑S∈N╲i∣S∣!∣N∣−∣S∣−1!vS∪i−vSψ。
2024-10-26 00:23:36
1455
原创 Machine Learning and Fund Characteristics Help to Select Mutual Funds with Positive Alpha
Machine-learning methods exploit fund characteristics to select tradable long-only portfolios of mutual funds that earn significant out-of-sample annual alphas of 2.4% net of all costs. 基于机器学习的方法,仅利用基金特征选择公募基金组合,获得了显著的样本外α值。
2024-10-23 11:31:57
1018
原创 GPTo1论文详解
OpenAI o1使用强化学习训练模型,通过Chain of Thought思维链来进行推理。但最重要的是它指出了新的方向。虽然只是思维链,模型本身没什么提升,但这意味着你可以堆算力来产出高质量的问答。然后把这些问答再喂给更小的模型。然后再用更小的模型微调大模型。然后大模型再继续cot产出更好的问答。这就是一个指数性的爆发。原本以为ai很难又再大的模型突破,但现在看来应该会沿着势头继续下去。
2024-09-19 14:35:16
2806
原创 Expectation disarray Analysts’ growth forecast anomaly in China
在本研究中,我们考察了分析师收益增长预测对中国资产定价的影响。我们的发现与之前在美国市场进行的研究有所不同。具体来说,我们发现分析师的增长预测在中国对股票回报具有正面的预测能力。我们的结果表明,在中国,投资者的预期并没有与分析师的预测保持一致。因此,分析师预测中的偏差似乎并没有扭曲价格。这并不是因为投资者有效地过滤了这些偏差,而是因为这些预测从一开始就基本上被忽视了
2024-09-17 14:45:47
956
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅