【纪中集训2019.3.29】整除分块

题目

描述

​ 本题的背景是整除分块;

​ 定义一个数列$a_{n,i}   =  \lfloor \frac{n}{i} \rfloor $ ;

​ 求$\sum_{i=l}^{r} mex(a_n) $ ;

​ 其中\(mex\)表示序列中最小的没有出现过的自然数;

​ 答案对\(998244353\)取模 ;

范围

\(1 \le T \le 65536 \ , \ 1 \le l ,r \le 10^{36}\)

​ 评测系统支持使用 $ _ _ int218 $ ,但是不能直接读入输出,需要你手写 $ IO $ ;

题解

  • Part 1
  • 如果你写过整除分块,根据整除分块的写法基础,\(i\)\(a_n\)中不出现的充要条件是:
    \[ \begin{align} \lfloor \frac{n}{\lfloor \frac{n}{i} \rfloor} \rfloor \neq i \\ \lfloor \frac{n}{\lfloor \frac{n}{i} \rfloor} \rfloor \ge i+1 \\ \frac{n}{\lfloor \frac{n}{i} \rfloor} \ge i +1 \\ \frac{n}{i+1} \ge \lfloor \frac{n}{i} \rfloor \\ \\ 令: \lfloor \frac{n}{i} \rfloor = a \\ 结合上面的推导,根据定义有:\\ \\ a(i+1) \le n \lt i(a+1) \\ 且在 0 \le a \lt i 时有意义; \end{align} \]

  • 意思是我们得到了关于不出现\(i\)的关于\(n\)的区间,记这样子的区间为\(S(i,a)\)

  • Part 2
  • 观察式子的左右两边,可以得到\(S(i+1,a-1)\)\(S(i,a)\)可以拼接,推广得在同一副对角线上的区间连续:

  • 即这样的形式:

  • 1101338-20190401164852167-178289018.png

  • 记以\(S(i,0)\)开头的对角线标号为\(i\),按照标号,从小到大考虑每一条跳条对角线;

  • 注意到\(|S(i,a)| = i(a+1) - a(i+1) = i - a\)

  • 所以有:第\(i\)条线不会影响第\(1 \to i-1\)条线已经覆盖的区间的答案;

  • 发现多出来的区间长度依次是:$1  1  2  2  3  3     \cdots     i   i \cdots $ ;

  • 容易发现每一次的段都是从后往前看都是一个连续增大的数列(相邻差最大为1);

  • 对于第\(2i\)个多出来的区间,从后往前第一小段的长度为2,值为\(i\),以后值+1,长度+2,直到总长度为\(i\)

  • 对于第\(2i-1\)个多出来的区间,从后往前第一小段的长度为1,值为\(i\),以后值+1,长度+2,直到总长度为\(i\)

  • Part 3
  • 可以通过打表直接到\(Part \ 3\)

  • 分奇数段和偶数段求和,最后再删去剩下的一小段:

  • 对于奇数段:
    \[ \begin{align} &= \sum_{i=1}^{l}\sum_{j=1}^{i} i + \sqrt{j-1} = \sum_{i=1}^{l} i^2 +\sum_{i=1}^{l} \sum_{j=1}^{i} \sqrt{j-1} \\ \to &\sum_{i=1}^{l} \sum_{j=1}^{i} \sqrt{j-1}= \sum_{j=1}^{l}\sqrt{j-1}(l-j+1)\\ &=\sum_{j=1}^{l}(l-j+1) \sum_{k=1}[k^2<j]= \sum_{k=1}^{k^2<l}\sum_{j=1}^{l-k^2}j\\ &直接运用等差数列求和再预处理次方和即可求得答案; \end{align} \]

  • 对于偶数段,可以不用求出\(k^2+k\)的逆,可以在奇数段的推导上直接得出:
    \[ \begin{align} &\sum_{k=1}^{k^2+k<l}\sum_{j=1}^{l-k^2-k}j \end{align} \]

    //__int128真不是好东西,不仅不能直接读入开根还要炸精度!!! 
    #include<bits/stdc++.h>
    #define mod 998244353
    #define eps 1e-9
    #define ll __int128
    #define ld long double
    #define il inline 
    using namespace std;
    ll n,iv2,iv4,iv6,iv30;
    il char gc(){
      static char*p1,*p2,s[1000000];
      if(p1==p2)p2=(p1=s)+fread(s,1,1000000,stdin);
      return(p1==p2)?EOF:*p1++;
    }
    il ll rd(){
      ll x=0;char c=gc();
      while(c<'0'||c>'9')c=gc();
      while(c>='0'&&c<='9')x=x*10+c-'0',c=gc();
      return x;
    }
    char ps[1000000],*pp=ps;
    il void push(char x){
      if(pp==ps+1000000)fwrite(ps,1,1000000,stdout),pp=ps;
      *pp++=x;
    }
    il void print(ll x){
      static int sta[100],top;
      if(!x){push('0'),push('\n');return;}
      while(x)sta[++top]=x%10,x/=10;
      while(top)push(sta[top--]^'0');
      push('\n');
    }
    il void flush(){fwrite(ps,1,pp-ps,stdout);}
    il ll pw(ll x,ll y){
      ll re=1;
      while(y){
          if(y&1)re=re*x%mod;
          y>>=1;x=x*x%mod;
      }
      return re;
    }
    il void inc(ll&x,ll y){x+=y;if(x>=mod)x-=mod;}
    il void dec(ll&x,ll y){x-=y;if(x<0)x+=mod;}
    il ll get1(ll n){
      //return floor(sqrt((ld)1.0*n)+eps);
      ll re=floor(sqrt((ld)1.0*n)+eps);
      while(re*re>=n)re--;
      return re;
    }
    il ll get2(ll n){
      //return floor((sqrt((ld)4.0*n-3)-1)/2+eps);
      ll re=floor((sqrt((ld)4.0*n-3)-1)/2+eps);
      while(re*re+re>=n)re--;
      return re;
    }
    il ll cal1(ll n){n%=mod;return n*(n+1)%mod*iv2%mod;}
    il ll cal2(ll n){n%=mod;return n*(n+1)%mod*(2*n+1)%mod*iv6%mod;}
    il ll cal3(ll n){n%=mod;return n*(n+1)%mod*n%mod*(n+1)%mod*iv4%mod;}
    il ll cal4(ll n){n%=mod;return n*(n+1)%mod*(2*n+1)%mod*(3ll*n*n%mod+3*n%mod+mod-1)%mod*iv30%mod;}
    il ll solve1(ll l){
      ll n=get1(l),re=0;
      inc(re,(n%mod)*(l%mod)%mod*(l%mod+1)%mod);
      dec(re,(2*(l%mod)+1)*cal2(n)%mod);
      inc(re,cal4(n));
      re=(re*iv2%mod+cal2(l)-1)%mod; 
      return re;
    }
    il ll solve2(ll l){
      ll n=get2(l),re=0;
      inc(re,(n%mod)*(l%mod)%mod*(l%mod+1)%mod);
      dec(re,(2*(l%mod)+1)*cal1(n)%mod);
      dec(re,2*l*cal2(n)%mod);
      inc(re,2*cal3(n)%mod);
      inc(re,cal4(n)%mod);
      re=((re*iv2%mod+cal2(l))%mod+cal1(l))%mod;
      return re;
    }
    il ll solve3(ll l,ll n){
      ll m=get1(n),re=(n%mod)*(l%mod)%mod;
      inc(re,(m%mod)*(n%mod)%mod);
      dec(re,cal2(m));
      return re;
    }
    il ll solve4(ll l,ll n){
      ll m=get2(n),re=(n%mod)*((l%mod)+1)%mod;
      inc(re,(m%mod)*(n%mod)%mod);
      dec(re,cal2(m));
      dec(re,cal1(m));
      return re;
    }
    il ll solve(ll n){
      ll l=get2(n+1)+1,m=l*(l+1)-1,re=0;
      inc(re,solve1(l));
      inc(re,solve2(l));
      if(m>n)dec(re,solve4(l,min(l,m-n)));
      if(m-l>n)dec(re,solve3(l,min(l,m-n-l)));
      return re;
    }
    int main(){
      freopen("mex.in","r",stdin);
      freopen("mex.out","w",stdout);
      iv2=pw(2,mod-2);iv4=pw(4,mod-2);
      iv6=pw(6,mod-2);iv30=pw(30,mod-2);
      ll C=rd(),T=rd();
      while(T--){
          ll l=rd(),r=rd();
          ll ans=(solve(r)-solve(l-1)+mod)%mod;
          print(ans);
      }
      flush();
      return 0;
    }

转载于:https://www.cnblogs.com/Paul-Guderian/p/10637349.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值