hdu 2685(数论相关定理+欧几里德定理+快速取模)

I won't tell you this is about number theory

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 458    Accepted Submission(s): 142


Problem Description
To think of a beautiful problem description is so hard for me that let's just drop them off. :)
Given four integers a,m,n,k,and S = gcd(a^m-1,a^n-1)%k,calculate the S.

 

 

Input
The first line contain a t,then t cases followed.
Each case contain four integers a,m,n,k(1<=a,m,n,k<=10000).
 

 

Output
One line with a integer S.
 

 

Sample Input
1 1 1 1 1
 

 

Sample Output
0
 

 

Author
Teddy
 

 

Source
 
这道题要知道这个公式:
gcd(a m-1,a n-1) = a gcd(m,n)-1
推广:
若 gcd(a,b)=1
gcd(a m-b m,a n-b n) = a gcd(m,n)-b gcd(m,n)
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL;
LL pow_mod(LL a,LL n,LL mod){
    LL ans = 1;
    while(n){
        if(n&1) ans = ans*a%mod;
        a=a*a%mod;
        n=n>>1;
    }
    return ans;
}
LL gcd(LL a,LL b){
    return b==0?a:gcd(b,a%b);
}
int main()
{
    int tcase;
    scanf("%d",&tcase);
    while(tcase--){
        LL a,m,n,k;
        scanf("%lld%lld%lld%lld",&a,&m,&n,&k);
        LL t = gcd(m,n);
        LL ans = (pow_mod(a,t,k)-1+k)%k;
        printf("%lld\n",ans);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/liyinggang/p/5530001.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值