取模运算总结 - 数论

引入

  • 编程竞赛有相当一部分题目的结果过于庞大,整数类型无法存储,往往只要求输出取模的结果。
  • 例如(a+b)%p,若a+b的结果我们存储不了,再去取模,结果显然不对,我们为了防止溢出,可以先分别对a取模,b取模,再求和,输出的结果相同。
  • a mod b表示a除以b的余数。有下面的公式:
    • (a + b) % p = (a%p + b%p) %p
    • (a - b) % p = ((a%p - b%p) + p) %p
    • (a * b) % p = (a%p)*(b%p) %p
  • 注意对于除法取模,我们不能直接分别取模了,详见逆元。

快速幂取模

typedef long long LL;
LL pow_mod(LL a,LL b,LL p){
  //快速幂取模
    LL ans=1,base=a;
    while(b>0){
        if(b&
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值