第二类斯特林数

第二类斯特林数

第二类斯特林数,记为\(\begin{Bmatrix} n \\ m \end{Bmatrix}\)\(S(n,m)\),表示将\(n\)个元素划分到\(m\)个非空无序集合的方案数

计算式

计算式有两种,递推式和通项式

--递推式--
\(n\)个元素有两种选择,自己独立为一个集合,或者加入之前的集合
\[\begin{Bmatrix} n \\ k \end{Bmatrix} = \begin{Bmatrix} n - 1 \\ k - 1 \end{Bmatrix} + \begin{Bmatrix} n - 1 \\ k \end{Bmatrix} * k\]

--通项式--
根据容斥:
\[\begin{Bmatrix} n \\ m \end{Bmatrix} = \frac{1}{m!} \sum\limits_{k = 0}^{m} (-1)^{k} {m \choose k} (m - k)^{n}\]
可以用\(NTT\)\(O(nlogn)\)的时间内计算出所有的关于\(n\)相同的\(\begin{Bmatrix} n \\ m \end{Bmatrix}\)
不过通常会结合其它式子展开化简

性质

接下来不加证明地给出一些性质:

\[\begin{Bmatrix} 0 \\ 0 \end{Bmatrix} = 1\]

\[\begin{Bmatrix} n \\ 0 \end{Bmatrix} = 0 [ n >0]\]

\[\begin{Bmatrix} n \\ n \end{Bmatrix} = 1\]

\[\begin{aligned} \begin{Bmatrix} n \\ 2 \end{Bmatrix} &= \begin{Bmatrix} n - 1 \\ 1 \end{Bmatrix} + \begin{Bmatrix} n - 1 \\ 2 \end{Bmatrix} * 2 \\ &= 1 + \begin{Bmatrix} n - 1 \\ 2 \end{Bmatrix} * 2 \\ &= 2^{n - 1} + 1 \end{aligned}\]

\[\begin{Bmatrix} n \\ n - 1 \end{Bmatrix} = {n \choose 2}\]

\[\begin{Bmatrix} n \\ n - 2 \end{Bmatrix} = {n \choose 3} + 3 * {n \choose 4}\]

转载于:https://www.cnblogs.com/Mychael/p/8975571.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值