【组合数学】第二类斯特林数

本文深入探讨了第二类斯特林数的概念,它表示将n个不同元素分成m个集合的方案数。文章通过关键词句解释了集合拆分的动态规划公式,并指出其在组合数学中解决放球模型问题的应用,提供了代码实现思路和转移方程的理解。
摘要由CSDN通过智能技术生成

一、定义
第二类Stirling数即:,又可记为[与第一类的表示有大小写的区别]。其表示将n个不同的元素分成m个集合的方案数。
二、理解关键词句
1.集合的一个拆分(表示将n个不同的元素拆分成m个集合的方案数)
2.dp[n][m] = m*dp[n-1][m] + dp[n-1][m-1] (dp[n][m]表示n个元素划分为m个集合的方案数)
2.1对于第n个元素,如果前面的n-1个元素应划分在m个集合内,那么第n个元素放在那个集合内都是可以的即m*dp[n-1][m]
2.3如果前n-1个元素已经划分在了m-1个集合内,则第n个元素只能单独划分在第m个集合内即1*dp[n-1][m-1]
三、应用
1.常常用于解决组合数学中几类放球模型。描述为:将n个不同的球放入m个无差别的盒子中,要求盒子非空,有几种方案?
1.1代码实现思路:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值