[HDU 4666]Hyperspace[最远曼哈顿距离][STL]

题意:

许多 k 维点, 求这些点之间的最远曼哈顿距离. 并且有 q 次操作, 插入一个点或者删除一个点. 每次操作之后均输出结果.

思路:

用"疑似绝对值"的思想, 维护每种状态下各点的计算值, 插入或删除一个点就更新一次每种状态(用 multiset 或 map 或 priority_queue 实现), 每次求ans时扫一遍最大差值即可.


为了练习STL, 每一个都实现一次.


multiset

 

/* **********************************************
Author      : kuangbin
Created Time: 2013/8/13 18:25:38
File Name   : F:\2013ACM练习\2013多校7\1001.cpp
*********************************************** */
//4640MS    14972K
#include <cstdio>
#include <algorithm>
#include <set>
using namespace std;
int a[60010][10];
multiset<int>mst[1<<5];

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int q,k;
    while(scanf("%d%d",&q,&k)==2)
    {
        for(int i = 0;i < (1<<k);i++)
            mst[i].clear();
        int od,x;
        for(int i = 1;i <= q;i++)
        {
            scanf("%d",&od);
            if(od == 0)
            {
                for(int j = 0;j < k;j++)
                    scanf("%d",&a[i][j]);
                for(int j = 0; j < (1<<k); j++)
                {//计算当前点在每种情况下的"疑似绝对值"
                    int s = 0;
                    for(int t = 0; t < k;t++)
                        if(j & (1<<t))
                            s += a[i][t];
                        else s -= a[i][t];
                    mst[j].insert(s);//插入到该种情况下
                }
            }
            else
            {
                scanf("%d",&x);
                for(int j = 0; j < (1<<k); j++)
                {//一次操作,插入或删除一个点,都是将这个点对应的所有状态插入每种状态中
                    int s = 0;//因此,要清除一次操作,就要删除所有状态中的那一个
                    for(int t = 0; t < k;t++)
                        if(j & (1<<t))
                            s += a[x][t];
                        else s -= a[x][t];
                    multiset<int>::iterator it = mst[j].find(s);
                    mst[j].erase(it);
                }
            }
            int ans = 0;
            for(int j = 0; j < (1<<k);j++)
            {
                multiset<int>::iterator it = mst[j].end();
                it--;
                int t1 = (*it);
                it = mst[j].begin();
                int t2 = (*it);//用于作差
                ans = max(ans,t1-t2);//保留最大值
            }
            printf("%d\n",ans);
        }
    }
    return 0;
}

 

map

 

//8359MS	37928K慢死了

#include <cstdio>
#include <algorithm>
#include <map>
using namespace std;

int a[60010][6];
map<int, int> mp[1<<5];

int main()
{
    int q,k;
    while(scanf("%d %d",&q,&k)==2)
    {
        for(int i=0;i<1<<k;i++)
            mp[i].clear();
        int od, x;
        for(int i=1;i<=q;i++)
        {
            scanf("%d",&od);
            if(!od)
            {
                for(int j=0;j<k;j++)
                    scanf("%d",a[i]+j);
                for(int s=0;s<1<<k;s++)
                {
                    int t = 0;
                    for(int j=0;j<k;j++)
                    {
                        if(s & (1<<j))  t += a[i][j];
                        else t -= a[i][j];
                    }
                    mp[s][t]++;
                  //  printf("map[s][t] = %d\n",mp[s][t]);
                }
            }
            else
            {
                scanf("%d",&x);
                for(int s=0;s<1<<k;s++)
                {
                    int t = 0;
                    for(int j=0;j<k;j++)
                    {
                        if(s & (1<<j))  t += a[x][j];
                        else t -= a[x][j];
                    }
                    map<int, int>::iterator it = mp[s].find(t);
                    mp[s][t]--;
                }
            }
            int ans = 0;
            for(int s=0;s<(1<<k);s++)
            {
                map<int, int>::iterator it = mp[s].end();
                it--;
                while(it->second==0)   it--;
                int mx = it->first;///first~~~
                it = mp[s].begin();
                while(it->second==0)   it++;
                int mi = it->first;
                ans = max(ans, mx - mi);
               // printf("mx = %d, mi = %d\n",mx,mi);
            }
            printf("%d\n",ans);
        }
    }
}

 

priority_queue

优先队列只能返回队首元素,因此需要两个队列分别求最大最小值.

对于已删除的元素, 无法直接删除, 可以做标记, 碰到已删除的元素时直接pop掉就行了.

因此入队的就不能仅仅是一个值(前两个有find功能, 不需要额外标号), 而应该是一个记录key和value的结构体.

 

//2218MS	36748K
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;

int a[6];
bool vis[60005];
typedef struct ascending_node
{
    int id,t;
    bool operator<(const ascending_node& a) const
    {
        return t > a.t;
    }
}anode;
typedef struct descending_node
{
    int id,t;
    bool operator<(const descending_node& a) const
    {
        return t < a.t;
    }
}dnode;
/*  2812MS	  30224K
priority_queue<anode> apq[1<<5];
priority_queue<dnode> dpq[1<<5];
int main()
{
    int q,k;
    while(scanf("%d %d",&q,&k)==2)
    {
        for(int i=0;i<1<<k;i++)
        {
            while(!apq[i].empty())  apq[i].pop();
            while(!dpq[i].empty())  dpq[i].pop();
        }*/
/**/
int main()
{
    int q,k;
    while(scanf("%d %d",&q,&k)==2)
    {
        priority_queue<anode> apq[1<<5];
        priority_queue<dnode> dpq[1<<5];/**/
        anode t1;
        dnode t2;
        memset(vis,false,sizeof(vis));
        int od, x;
        for(int i=1;i<=q;i++)
        {
            scanf("%d",&od);
            if(!od)
            {
                for(int j=0;j<k;j++)
                    scanf("%d",a+j);
                for(int s=0;s<1<<k;s++)
                {
                    int t = 0;
                    for(int j=0;j<k;j++)
                    {
                        if(s & (1<<j))  t += a[j];
                        else t -= a[j];
                    }
                    t1.t = t2.t = t;
                    t1.id = t2.id = i;
                    apq[s].push(t1);
                    dpq[s].push(t2);
                  //  printf("map[s][t] = %d\n",mp[s][t]);
                }
            }
            else
            {
                scanf("%d",&x);
                vis[x] = true;
            }
            int ans = 0;
            for(int s=0;s<(1<<k);s++)
            {
                while(1)
                {
                    t1 = apq[s].top();
                    if(!vis[t1.id]) break;
                    apq[s].pop();
                }
                while(1)
                {
                    t2 = dpq[s].top();
                    if(!vis[t2.id]) break;
                    dpq[s].pop();
                }
                ans = max(ans, t2.t-t1.t);
            }
            printf("%d\n",ans);
        }
    }
}


 

 

转载于:https://www.cnblogs.com/james1207/p/3293807.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值