3589: 动态树
Time Limit: 30 Sec Memory Limit: 1024 MBSubmit: 635 Solved: 230
[Submit][Status][Discuss]
Description
别忘了这是一棵动态树, 每时每刻都是动态的. 小明要求你在这棵树上维护两种事件
事件0:
这棵树长出了一些果子, 即某个子树中的每个节点都会长出K个果子.
事件1:
小明希望你求出几条树枝上的果子数. 一条树枝其实就是一个从某个节点到根的路径的一段. 每次小明会选定一些树枝, 让你求出在这些树枝上的节点的果子数的和. 注意, 树枝之间可能会重合, 这时重合的部分的节点的果子只要算一次.
Input
第一行一个整数n(1<=n<=200,000), 即节点数.
接下来n-1行, 每行两个数字u, v. 表示果子u和果子v之间有一条直接的边. 节点从1开始编号.
在接下来一个整数nQ(1<=nQ<=200,000), 表示事件.
最后nQ行, 每行开头要么是0, 要么是1.
如果是0, 表示这个事件是事件0. 这行接下来的2个整数u, delta表示以u为根的子树中的每个节点长出了delta个果子.
如果是1, 表示这个事件是事件1. 这行接下来一个整数K(1<=K<=5), 表示这次询问涉及K个树枝. 接下来K对整数u_k, v_k, 每个树枝从节点u_k到节点v_k. 由于果子数可能非常多, 请输出这个数模2^31的结果.
Output
对于每个事件1, 输出询问的果子数.
Sample Input
5
1 2
2 3
2 4
1 5
3
0 1 1
0 2 3
1 2 3 1 1 4
1 2
2 3
2 4
1 5
3
0 1 1
0 2 3
1 2 3 1 1 4
Sample Output
13
HINT
1 <= n <= 200,000, 1 <= nQ <= 200,000, K = 5.
生成每个树枝的过程是这样的:先在树中随机找一个节点, 然后在这个节点到根的路径上随机选一个节点, 这两个节点就作为树枝的两端.
Source
分析:这标题......
其实这道题很容易就能想到解法:线段树+树链剖分+dfs序.对于第一个操作无非就是在线段树上区间加嘛,但是第二个操作就有点麻烦,因为统计的是并,不能一条一条地统计链的答案.解决这种问题有两种方法:1.利用容斥原理,很容易想到. 2.将需要统计的部分标记出来,然后统计有标记的地方. 利用第二种方法.先对所有需要操作的链打上标记.统计完答案后将所有标记清零就可以了,挺好写.
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int maxn = 400010; int n,q,head[maxn],to[maxn],nextt[maxn],tot = 1; int pos[maxn],ppos[maxn],deep[maxn],top[maxn],sizee[maxn],son[maxn],fa[maxn]; int sum[maxn << 2],tag[maxn << 2],add[maxn << 2],val[maxn << 2],cnt,endd[maxn],L[maxn << 2],R[maxn << 2]; void addd(int x,int y) { to[tot] = y; nextt[tot] = head[x]; head[x] = tot++; } void dfs(int u,int faa,int dep) { deep[u] = dep; sizee[u] = 1; for (int i = head[u];i;i = nextt[i]) { int v = to[i]; if (v == faa) continue; fa[v] = u; dfs(v,u,dep + 1); sizee[u] += sizee[v]; if (sizee[v] > sizee[son[u]]) son[u] = v; } } void dfs2(int u,int topp) { pos[u] = ++cnt; ppos[cnt] = u; top[u] = topp; if (son[u]) dfs2(son[u],topp); for (int i = head[u];i;i = nextt[i]) { int v = to[i]; if (v == fa[u] || v == son[u]) continue; dfs2(v,v); } endd[u] = cnt; } void pushup(int o) { sum[o] = sum[o * 2] + sum[o * 2 + 1]; val[o] = val[o * 2] + val[o * 2 + 1]; } void build(int o,int l,int r) { L[o] = l; R[o] = r; tag[o] = -1; if (l == r) return; int mid = (l + r) >> 1; build(o * 2,l,mid); build(o * 2 + 1,mid + 1,r); pushup(o); } void pushdown(int o) { if (add[o]) { add[o * 2] += add[o]; add[o * 2 + 1] += add[o]; sum[o * 2] += add[o] * (R[o * 2] - L[o * 2] + 1); sum[o * 2 + 1] += add[o] * (R[o * 2 + 1] - L[o * 2 + 1] + 1); add[o] = 0; } if (tag[o] != -1) { val[o * 2] = sum[o * 2] * tag[o]; //这里其实是新开了一个数组将答案传到根节点上去 val[o * 2 + 1] = sum[o * 2 + 1] * tag[o]; tag[o * 2] = tag[o * 2 + 1] = tag[o]; tag[o] = -1; } } void update(int o,int l,int r,int x,int y,int v) //区间加 { if (x <= l && r <= y) { sum[o] += v * (r - l + 1); add[o] += v; return; } pushdown(o); int mid = (l + r) >> 1; if (x <= mid) update(o * 2,l,mid,x,y,v); if (y > mid) update(o * 2 + 1,mid + 1,r,x,y,v); pushup(o); } void update2(int o,int l,int r,int x,int y,int v) { if (x <= l && r <= y) { val[o] = sum[o] * v; tag[o] = v; //打标记,v=1代表统计,v=0代表不统计,v=-1代表没标记. return; } pushdown(o); int mid = (l + r) >> 1; if (x <= mid) update2(o * 2,l,mid,x,y,v); if (y > mid) update2(o * 2 + 1,mid + 1,r,x,y,v); pushup(o); } void solve(int x,int y) { while (top[x] != top[y]) { if (deep[top[x]] < deep[top[y]]) swap(x,y); update2(1,1,n,pos[top[x]],pos[x],1); x = fa[top[x]]; } if (deep[x] < deep[y]) swap(x,y); update2(1,1,n,pos[y],pos[x],1); } int main() { scanf("%d",&n); for (int i = 1; i < n; i++) { int x,y; scanf("%d%d",&x,&y); addd(x,y); addd(y,x); } dfs(1,0,1); dfs2(1,1); build(1,1,n); scanf("%d",&q); for (int i = 1; i <= q; i++) { int id,x,y; scanf("%d",&id); if (id == 0) { scanf("%d%d",&x,&y); update(1,1,n,pos[x],endd[x],y); } else { int k; scanf("%d",&k); while (k--) { scanf("%d%d",&x,&y); solve(x,y); } printf("%d\n",val[1] & 0x7fffffff); update2(1,1,n,1,n,0); } } return 0; }