题目描述
已知N个正整数:A1、A2、……、An 。今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小。均方差公式如下:
分析
模拟退火学习笔记:https://www.cnblogs.com/chhokmah/p/10529114.html
万物皆可颓火,我们首先将初始的答案当做一半一半的答案,然后我们随机化抽取两个部分的数据。根据题目中的描述,因为两个组别之间数据个数只能是差一,那么差不多就是一半一半的情况。那么我们就只需要分块两部分,然后随机交换,如果两个数据交换之后能使答案能更优,那么就交换,如果不能让我们的答案变得更加优,那么就让随机概率,这个概率很明显是越到后面交换的概率越小,那么我们就是exp(delta) < t * Rand()
,那么就交换,否则就不交换。
模拟退火的精髓还是这个调参,这道题目我一遍A掉了,感觉有一点欧皇。
我给出一个比较优秀的随机种子,是ouhuang和6666666的取模,就是15346301。
ac代码
#include <bits/stdc++.h>
#define ms(a,b) memset(a, b, sizeof(a))
#define db double
using namespace std;
inline char gc() {
static char buf[1 << 16], *S, *T;
if (S == T) {
T = (S = buf) + fread(buf, 1, 1 << 16, stdin);
if (T == S) return EOF;
}
return *S ++;
}
template <typename T>
inline void read(T &x) {
T w = 1;
x = 0;
char ch = gc();
while (ch < '0' || ch > '9') {
if (ch == '-') w = -1;
ch = gc();
}
while (ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = gc();
x = x * w;
}
template <typename T>
void write(T x) {
if (x < 0) putchar('-'), x = -x;
if (x > 9) write(x / 10);
putchar(x % 10 + 48);
}
#define N 305
db ans = 1e30, ave = 0;
int sum[N], pos[N], a[N];
int n, m;
void SA(db T){
ms(sum, 0);
for (int i = 1; i <= n; i ++) {
pos[i] = rand() % m + 1;
sum[pos[i]] += a[i];
}
db res = 0;
for (int i = 1; i <= m; i ++)
res += (1.0 * sum[i] - ave) * (1.0 * sum[i] - ave);
while (T > 1e-4) {
int t = rand() % n + 1, x = pos[t], y;
if (T > 500) y = min_element(sum + 1, sum + 1 + m) - sum;
else y = rand() % m + 1;
if (x == y) continue;
db tmp = res;
res -= (sum[x] - ave) * (sum[x] - ave);
res -= (sum[y] - ave) * (sum[y] - ave);
sum[x] -= a[t], sum[y] += a[t];
res += (sum[x] - ave) * (sum[x] - ave);
res += (sum[y] - ave) * (sum[y] - ave);
if (res < tmp || rand() % 10000 <= T) pos[t] = y;
else sum[x] += a[t], sum[y] -= a[t], res = tmp;
ans = min(ans, res);
T *= 0.98;
}
}
int main() {
srand(20040127);
read(n); read(m);
for (int i = 1; i <= n; i ++) {
read(a[i]);
ave += 1.0 * a[i];
}
ave /= 1.0 * m;
for (int i = 1; i <= 1500; i ++) SA(10000);
printf("%.2lf\n", sqrt(ans / m));
return 0;
}