「学习笔记」爬山算法与模拟退火

本文介绍了爬山算法和模拟退火的概念,爬山算法是一种局部优化的贪心搜索方法,易陷入局部最优。模拟退火则是一种随机搜索算法,通过逐步降低接受较差解的概率来寻找全局最优解。文章通过例题分析了这两种算法的使用,并推荐了几个相关的编程竞赛题目。
摘要由CSDN通过智能技术生成

爬山算法(Hill Climbing )

爬山算法(Hill Climbing )是一种局部择优的方法,采用启发式方法,是对深度优先搜索的一种改进,它利用反馈信息帮助生成解的决策。 属于人工智能算法的一种。

有一些问题,是找全局最大值的。题目所述出自变量与值之间的关系是函数,而这函数图像往往像山的形状,可能有许多局部最大、局部最小。于是“爬山”、“高地”、“山脊”等词形象地表示了算法的作用与函数图像的某些部分.

解决这类问题一般有两种方法:爬山算法(Hill Climbing )与模拟退火(Simulated Annealing)。常用的为模拟退火,它往往可以得到最优解。不过这里先介绍爬山算法。

爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。

爬山算法的优点为:避免遍历,通过启发选择部分节点,从而达到提高效率的目的。但是有缺点:只能找到局部最优,一般找不到全局最优解;搜索一旦到达高地,就无法确定搜索最佳方向,会产生随机走动,使得搜索效率降低;搜索可能会在山脊的两面来回震荡,前进步伐很小。

下图反应了爬山算法相对于模拟退火的目光短浅之处(模拟退火也是随机算法,不一定可以找到最优解,但大部分情况可以找到)

qwq

模拟退火(Simulated Annealing)

退火是物理热力学里的概念。退火是将金属加热到一定温度,保持足够时间,然后以适宜速度冷却的一种金属热处理工艺。我们把这个过程模拟一下,就叫模拟退火(Simulated Annealing)。

爬山算法就是贪心法。而模拟退火是一种随机搜索算法。它的描述是这样的:

若移动后得到更优解,则总是接受该移动

若移动后的解比当前解要差,则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低。

根据热力学的原理,降温的概率 P P P表示为:

Δ E:当前状态与新状态的能量差

k k k:常数

T T T:时间

Δ E &gt; 0 \Delta E&gt;0 ΔE>0时,一定接受。 Δ E &lt; 0 \Delta E&lt;0 ΔE<0时就不一定了,并且x越来越小的时,函数值越来越趋近与0,这也就是说随着T的增加,概率越来越小,趋向稳定。

我们要维护T。初始温度为 T 0 T_0 T0(较大),降温系数为 d d d,最终温度为 T k T_k Tk

首先让 T = T 0 T = T_0 T=T0;每次让 T = d T T=dT T=dT T &lt; T k T&lt;T_k T<Tk时降温结束,此时为最优解。

调参时一般会调 d d d 0 &lt; d &lt; 1 0&lt;d&lt;1 0<d<1)。 d d d过大降温慢,得到最优解的可能性大(容易 T L E TLE TLE); d d d过小降温快,但得到最优解的可能性小(容易 W A WA WA);

那模拟退火具体怎么使用代码实现?

每次循环内有 4 步:

根据当前解找到下一个解

计算下一个解的 “能量”

决定是否要接受这个新解

降温

找下一个解时一般生成随机区间[−1,1]的随机数再乘上T作为差值. 得到一个[−T,T]的随机值作为差值,也就是说T越低,它随机到下一步的范围就越小。

伪代码:

当前温度 = 初始温度;

while 当前温度 > 终温:

根据T随机生成下一步;

计算出下一步的能量;

计算能量差;

if 接受:更新答案;

当前温度 乘以 降温系数;


推荐几道模拟退火的例题:

HDU 2899 比较好的入门题

HDU 3932 二维相关

NOIP2017 宝藏 骗分甚至AC

POJ 3311 TSP问题

例题讲解

HDU 2899 (求函数最值)

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <ctime> 
using namespace std;

double y;

double F(double x) {
   
    return 6 * pow(x, 7) + 8 * pow(x, 6) + 7 * pow(x, 3)
    + 5 * pow(x, 2) - y * x;
}

double Rand01() {
   
    return rand() / (double)RAND_MAX;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值