html 水纹效果原理,canvas实现水波纹效果

本文将会从水波的基本原理开始,详细讲解在canvas中模拟水波扩散,分析并计算水波的能量分布,并通过振幅模拟水波对图像的折射效果,最后实现水波特效。

水波基本原理

首先复习一波高中物理知识。

波是指振动的传播。波的传播方向与质点振动方向垂直的为横波,相同则为纵波,水波是横波和纵波的叠加。

对于水波这种波,我们在实现这个特效的时候,需要考虑到下面的特性:

圆形波:当你投一块石头到水池中时,你会看到一个以石头入水点为圆心所形成的一圈圈的水波

反射:水波碰到墙壁后会反射

衰减:因为水是有阻尼的,所以你会看到水波越往外扩散,越弱,最后消失,水面回复平静

水波使得图像发生折射,由于水波,使得水面凹凸不平,会折射和反射水池中的图像

衍射,波在传播中遇到有很大障碍物或遇到大障碍物中的孔隙时,会绕过障碍物的边缘或孔隙的边缘,呈现路径弯曲,在障碍物或孔隙边缘的背后展衍。

水波纹效果反映到图像上,其本质就是像素的偏移,相当于很多缩放的结合。因此对图像的处理就转化为如何移动图像上的像素点,从而模拟和表现出水波纹的效果。下面是本文将会实现的水波纹特效:更好的效果页面

波幅计算

波幅表示方法

波的本质是振动,然后传递能量,波的表现形式就是能量的分布情况,我们使用波幅(振动幅度)来描述每一点携带的能量。

假设一开始水面是平静的,整个水面的能量均匀分布。我们知道在canvas中,我们可以使用ctx.getImageData(0, 0, width, height)方法将一幅宽为width,高为height的图像像素信息存入一个数组中,这个数组大小为 width × height × 4 bytes(RGBA信息)。

我们可以建立两个和图像一样大小 width × height的数组,用来保存水面上每一个点的前一时刻和后一时刻波幅数据。或者直接使用一个 2 × width × height的数组,分为前半部分和后半部分来保存前后时刻的波幅数据。

水面在初始状态时是平静的平面,各点的波幅都为0,所以,数组的所有初始值都等于0。

var width = settings.width, // canvas宽度

height = settings.height, // canvas高度

amplitude_size = width * (height + 2) * 2, // 振幅数组大小

ripple_map = [], // 产生水波下一时刻振幅

last_map = []; // 初始时刻振幅

// 波幅数组初始化为0

for (var i = 0; i < amplitude_size; i++) {

ripple_map[i] = last_map[i] = 0;

}

忽略阻尼计算振幅

由上面一小节,我们可以用

math?formula=X_i来表示图像中的任意一个像素点,其中

math?formula=i的值在0到 width × height之间,我们把宽度width简记为

math?formula=W,将高度height简记为

math?formula=H,则可以用下面的集合表示图像上的像素点集合

如果你发现下面的公式显示不正常,那么是解析器插件罢工了,请移步到这儿

math?formula=%5C%5C%7B%20X_i%7C0%5Cle%20i%20%5Cle%20WH%20%5C%5C%7D

其中坐标为(x,y)的点为

math?formula=X_%7ByW%2Bx%7D

由于波的传播特性,某一点下一时刻的振动情况,受到周围质点的振动以及自身振动情况的联合影响。为了使问题简化,我们假设

math?formula=X_i点的振幅

math?formula=A_i除了受到自身的影响外,还受到来自它周围前、后、左、右四个点

math?formula=(X_%7Bi-W%7D%2CX_%7Bi%2BW%7D%2CX_%7Bi-1%7D%2CX_%7Bi%2B1%7D)的影响,并且假设这四个点对

math?formula=X_i点的影响力机会均等并且线性叠加的。那么可以得到

math?formula=X_i点的振幅公式:

math?formula=A_i%5E%7B%5Cprime%7D%20%3D%20a(A_%7Bi-W%7D%2BA_%7Bi%2BW%7D%2BA_%7Bi-1%7D%2BA_%7Bi%2B1%7D)%2BbA_i

math?formula=A_i分别为点

math?formula=X_i当前时刻的振幅

a、b为待定系数,

math?formula=A_0%5E%7B%5Cprime%7D

math?formula=X_0点下一时刻的振幅

对于图像边界上的点,需要进行特殊处理,可以适当增大振幅数组:(W+2)x(H+2)

假设水的阻尼为0。在这种理想条件下,水的总势能将保持不变。也就是说在任何时刻,所有点的振幅的和保持不变。那么可以得到下面能量守恒公式:

math?formula=%5Csum_%7Bi%3D0%7D%5En%7BA_i%5E%7B%5Cprime%7D%7D%3D%5Csum_%7Bi%3D0%7D%5En%7BA_i%7D

将上面的

math?formula=X_i点的振幅公式带入可得:

math?formula=%5Csum_%7Bi%3D0%7D%5En%7B%5Ba(A_%7Bi-W%7D%2BA_%7Bi%2BW%7D%2BA_%7Bi-1%7D%2BA_%7Bi%2B1%7D)%2BbA_i%5D%7D%3D%5Csum_%7Bi%3D0%7D%5En%7BA_i%7D

拆开可得:

math?formula=a%20%5Csum_%7Bi%3D0%7D%5En%7BA_%7Bi-W%7D%7D%2Ba%20%5Csum_%7Bi%3D0%7D%5En%7BA_%7Bi%2BW%7D%7D%2Ba%20%5Csum_%7Bi%3D0%7D%5En%7BA_%7Bi-1%7D%7D%2Ba%20%5Csum_%7Bi%3D0%7D%5En%7BA_%7Bi%2B1%7D%7D%2Bb%20%5Csum_%7Bi%3D0%7D%5En%7BA_i%7D%3D%5Csum_%7Bi%3D0%7D%5En%7BA_i%7D

其中可以近似的认为:

math?formula=%5Csum_%7Bi%3D0%7D%5En%7BA_%7Bi-W%7D%7D%3D%20%5Csum_%7Bi%3D0%7D%5En%7BA_%7Bi%2BW%7D%7D%3D%20%5Csum_%7Bi%3D0%7D%5En%7BA_%7Bi-1%7D%7D%3D%20%5Csum_%7Bi%3D0%7D%5En%7BA_%7Bi%2B1%7D%7D%3D%20%5Csum_%7Bi%3D0%7D%5En%7BA_i%7D

等式两边消去可得:

math?formula=4a%2Bb%3D1

找出一个最简解:

math?formula=a%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2C%20b%20%3D%20-1

因为

math?formula=%5Cfrac%7B1%7D%7B2%7D可以用移位运算符“>>”来进行,不用进行乘除法,所以,这组解是最适用的而且是最快的。那么最后得到的下一时刻的振幅公式就是:

math?formula=A_i%5E%7B%5Cprime%7D%20%3D%5Cfrac%7B1%7D%7B2%7D(A_%7Bi-W%7D%2BA_%7Bi%2BW%7D%2BA_%7Bi-1%7D%2BA_%7Bi%2B1%7D)-A_i

得到上面这个近似公式后,如果已知某一时刻水面上任意一点的波幅,就可以求出下一时刻水面上任意一点的波幅。

考虑阻尼

然而,在实际中是存在阻尼的,否则,用上面这个公式,一旦你在水中增加一个波源,水面将永不停止的震荡下去。

所以,还需要对波幅数据进行衰减处理,让每一个点在经过一次计算后,波幅都比理想值按一定的比例降低。这个衰减率经过测试,用

math?formula=%5Cfrac%7B1%7D%7B32%7D比较合适,也就是

math?formula=%5Cfrac%7B1%7D%7B2%5E5%7D,可以通过移位运算很快的获得。

最后的振幅计算算法如下:

// 计算下一时刻波幅,index为像素点位置,old_amplitude为上一时刻该点波幅

function calculAmplitude(index, old_amplitude) {

var x_boundary = 0, judge = map_index % width;

// 由于波幅数据顺序存储,加上左右边界检查,避免左边水波传递到右边

if (judge == 0) {

x_boundary = 1; // 左边边界

}else if (judge == width - 1) {

x_boundary = 2; // 右边边界

}

var top = ripple_map[index - width],// 上边的相邻点

bottom = ripple_map[index + width],// 下边的相邻点

left = x_boundary != 1 ? ripple_map[index - 1] : 0,// 左边的相邻点

right = x_boundary != 2 ? ripple_map[index + 1] : 0;// 右边的相邻点

// 计算当前像素点下一时刻的振幅

var amplitude = top + bottom + left + right;

amplitude >>= 1;

amplitude -= old_amplitude;

amplitude -= amplitude >> 5; // 计算衰减

return amplitude;

}

页面渲染

因为水的折射,当水面不与我们的视线相垂直的时候,我们所看到的水下的景物并不是在观察点的正下方,而存在一定的偏移。

偏移的程度与水波的斜率,水的折射率和水的深度都有关系,如果要进行精确的计算的话,显然是很不现实的。同样,我们只需要做线形的近似处理就行了。

因为水面越倾斜,所看到的水下景物偏移量就越大,最简单的做法可以近似的用水面上某点的前后、左右两点的波幅之差来代表所看到水底景物的偏移量。

这里我们选用画面的中点作为参考点来计算视觉的偏移。

我们将原始图像的像素信息保存在两个数组中,一个用于保存原始图像数据,一个用于实时保存实时渲染数据。这里需要注意更新图像的时候,图像的恢复问题,这里我们用一个反相器来进行恢复,一个点偏移了,我们给它一个反方向的偏移来抵消就可以恢复。

根据偏移量将原始图象上的每一个象素复制到渲染页面上,将渲染数据绘制到canvas中即可。

// 渲染下一帧

function renderRipple() {

var i = old_index,

deviation_x, // x水平方向偏移

deviation_y, // y竖直方向偏移

pixel_deviation, // 偏移后的ImageData对象像素索引

pixel_source; // 原始ImageData对象像素索引

// 交互索引 old_index, new_index

old_index = new_index;

new_index = i;

// 设置像素索引和振幅索引

i = 0;

map_index = old_index;

// 渲染所有像素点

for (var y = 0; y < height; y++) {

for (var x = 0; x < width; x++) {

// 计算当前像素点下一时刻的振幅

var amplitude = calculAmplitude(map_index, ripple_map[new_index + i]);

// 更新振幅数组

ripple_map[new_index + i] = amplitude;

amplitude = 1024 - amplitude;

var old_amplitude = last_map[i];

last_map[i] = amplitude;

if (old_amplitude != amplitude) {

// 计算偏移

deviation_x = (((x - half_width) * amplitude / 1024) << 0) + half_width;

deviation_y = (((y - half_height) * amplitude / 1024) << 0) + half_height;

// 检查边界

if (deviation_x > width) {

deviation_x = width - 1;

}

if (deviation_x < 0) {

deviation_x = 0;

}

if (deviation_y > height) {

deviation_y = height - 1;

}

if (deviation_y < 0) {

deviation_y = 0;

}

// 计算imageData中对应的像素RGBA偏移位置

pixel_source = i * 4;

pixel_deviation = (deviation_x + (deviation_y * width)) * 4;

// 移动像素的RGBA信息,ripple和texture为背景图的ImageData对象

ripple.data[pixel_source] = texture.data[pixel_deviation];

ripple.data[pixel_source + 1] = texture.data[pixel_deviation + 1];

ripple.data[pixel_source + 2] = texture.data[pixel_deviation + 2];

}

++i;

++map_index;

}

}

// 渲染处理之后的图像

ctx.putImageData(ripple, 0, 0);

}

波源

为了形成波,我们必须在平静的水面上加入波源,就像向水池中投入一个石头一样,形成的波源的大小和能量与石头的半径和你扔石头的力量都有关系。

为了模拟波源,我们只需要修改一开始初始化的波幅分布数组即可。需要注意投入石头的地方的波幅不易过小和过大。

另外,这个波源的半径也很好控制,只要以波源为圆心,画一个圆,让这个圆内的所有点都来一个脉冲即可。

波源生成方法如下:

// 在指定地点产生波源

function disturb(circleX, circleY) {

// 下面的移位运算可以将值向下取整

circleX <<= 0;

circleY <<= 0;

var maxDistanceX = circleX + dropRadius,

maxDistanceY = circleY + dropRadius;

for (var y = circleY - dropRadius; y < maxDistanceY; y++) {

for (var x = circleX - dropRadius; x < maxDistanceX; x++) {

ripple_map[old_index + y * width + x] += 512;

}

}

}

待处理事宜

还有很多要完善的地方,以后会更新到github,本文所有的效果代码也可以在Git上面找到,欢迎大家star。

最后,简单列一下接下来需要优化的点:

添加衍射

兼容跨域图片

图片自动缩放处理

JQuery插件化封装

适配优化,速度优化,效果优化

普通HTML元素支持,局部特效

衍射

在水波扩散的过程中,如果遇到障碍物,水波会绕过障碍物的边缘或孔隙的边缘,呈现路径弯曲,在障碍物或孔隙边缘的背后展衍。

其实实现起来很简单,我们只要始终保持障碍物的振幅一直为0即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值