线性基(高斯消元)

向量空间中可以组合出整个空间的项的最小数叫做这个线性空间的维数,而所有的项作为该线性空间的一个基底,简称基。

线性基是一种特殊的基底,对应异或空间的基底,即使用基底相互异或可以得到整个空间

求几个数的线性基可以用高斯消元求解,将每个数二进制展开后,类比于求向量空间的基底,只是将加法换为不进位加法异或

for(int i=1;i<=n;++i)
{
    for(int j=i;j<=n;++j)
    if(a[j]>a[i]) swap(a[i],a[j]);
    
    if(!a[i]) break;//消元完成后
    b[++cnt]=a[i];
    for(int k=50;k;--k)
    {
        
        if(a[i]>>k&1)//用第一个有1的位来消元 
        {
            for(int j=1;j<=n;++j)
            {
                if(i!=j&&(a[j]>>k&1)) a[j]^=a[i];
            }
                break;
        }
    }
}

用差不多的思路可以得到线性基的在线算法

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll a;
ll base[65];

void insert(ll x)
{
    for(ll i=60;i>=0;--i)
    {
        if(x>>i&1LL)
        {
            if(!base[i]) {base[i]=x;return;}
            else x^=base[i];
        }
    }
}
int main()
{
    cin>>n;
    for(int i=1;i<=n;++i) {cin>>a;insert(a);}
    ll ans=0;
    for(int i=60;i>=0;--i) if((ans^base[i])>ans) ans^=base[i];
    cout<<ans<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/Chtholly/p/10585630.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值