http://acm.hdu.edu.cn/showproblem.php?pid=3949
这题做过三次了,但是一直不是很懂,今天又理解了一下,就是让你在n个数字里面选一些,异或起来能得到一些值,然后问能得到的第k小的是多少。
这题首先每个数字都看成二进制,然后高斯消元,如果这一位是1,就把其他这一位是1的元素都异或它,消掉1,让这一位的1只有一个,然后得到一个k,就是说明消元完之后只有k个1,能够组成
2k
个数字,然后就是考虑这会的n个元素,每个元素都是原来的几个数字异或得到的值,所以可以直接组合,考虑一些特殊情况,就是如果得到的k=n,那么就是说每个数字都有1个1,那么就绝对不可能取到0,那么能够组成的数字就是
2k−1
个了,然后下面问你第k小,直接就是看k的二进制,哪一位有1,就把线性基里面从小到大的那个1异或上去就行了。
代码:
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
#define MAX 10005
#define MAXN 1000005
#define maxnode 15
#define sigma_size 30
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define limit 10000
//const int prime = 999983;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-4;
const LL mod = 1e9+7;
const ull mx = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
LL a[MAX];
int n;
int gauss(){
int k=1;
for(int i=63;i>=0;i--){
int t=0;
for(int j=k;j<=n;j++){
if((a[j]>>i)&1){
t=j;
break;
}
}
if(t){
swap(a[k],a[t]);
for(int j=1;j<=n;j++){
if(j!=k&&(a[j]>>i)&1) a[j]^=a[k];
}
k++;
}
}
return k-1;
}
int main(){
//freopen("in.txt","r",stdin);
int t,kase=0;
cin>>t;
while(t--){
cin>>n;
kase++;
printf("Case #%d:\n",kase);
for(int i=1;i<=n;i++) scanf("%I64d",&a[i]);
int cnt=gauss();
LL tmp=(1LL<<cnt);
if(cnt==n) tmp--;
int k;
cin>>k;
while(k--){
LL x;
scanf("%I64d",&x);
if(x>tmp) printf("-1\n");
else{
if(n>cnt) x--;
LL ans=0;
for(int i=0;i<cnt;i++){
if((x>>i)&1) ans^=a[cnt-i];
}
printf("%I64d\n",ans);
}
}
}
return 0;
}