HDU 3949 XOR (高斯消元求线性基)

本文介绍了一道算法题的解决思路,该题要求从给定的整数集合中选出若干个数进行异或运算,并找出所有可能结果中的第K小值。文章详细解释了如何通过将整数转换为二进制形式并应用高斯消元法来简化问题,最终高效地找到答案。
摘要由CSDN通过智能技术生成

http://acm.hdu.edu.cn/showproblem.php?pid=3949
这题做过三次了,但是一直不是很懂,今天又理解了一下,就是让你在n个数字里面选一些,异或起来能得到一些值,然后问能得到的第k小的是多少。
这题首先每个数字都看成二进制,然后高斯消元,如果这一位是1,就把其他这一位是1的元素都异或它,消掉1,让这一位的1只有一个,然后得到一个k,就是说明消元完之后只有k个1,能够组成 2k 个数字,然后就是考虑这会的n个元素,每个元素都是原来的几个数字异或得到的值,所以可以直接组合,考虑一些特殊情况,就是如果得到的k=n,那么就是说每个数字都有1个1,那么就绝对不可能取到0,那么能够组成的数字就是 2k1 个了,然后下面问你第k小,直接就是看k的二进制,哪一位有1,就把线性基里面从小到大的那个1异或上去就行了。


代码:

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")

using namespace std;
#define   MAX           10005
#define   MAXN          1000005
#define   maxnode       15
#define   sigma_size    30
#define   lson          l,m,rt<<1
#define   rson          m+1,r,rt<<1|1
#define   lrt           rt<<1
#define   rrt           rt<<1|1
#define   middle        int m=(r+l)>>1
#define   LL            long long
#define   ull           unsigned long long
#define   mem(x,v)      memset(x,v,sizeof(x))
#define   lowbit(x)     (x&-x)
#define   pii           pair<int,int>
#define   bits(a)       __builtin_popcount(a)
#define   mk            make_pair
#define   limit         10000

//const int    prime = 999983;
const int    INF   = 0x3f3f3f3f;
const LL     INFF  = 0x3f3f;
const double pi    = acos(-1.0);
const double inf   = 1e18;
const double eps   = 1e-4;
const LL    mod    = 1e9+7;
const ull    mx    = 133333331;

/*****************************************************/
inline void RI(int &x) {
      char c;
      while((c=getchar())<'0' || c>'9');
      x=c-'0';
      while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
 }
/*****************************************************/

LL a[MAX];
int n;
int gauss(){
    int k=1;
    for(int i=63;i>=0;i--){
        int t=0;
        for(int j=k;j<=n;j++){
            if((a[j]>>i)&1){
                t=j;
                break;
            }
        }
        if(t){
            swap(a[k],a[t]);
            for(int j=1;j<=n;j++){
                if(j!=k&&(a[j]>>i)&1) a[j]^=a[k];
            }
            k++;
        }
    }
    return k-1;
}
int main(){
    //freopen("in.txt","r",stdin);
    int t,kase=0;
    cin>>t;
    while(t--){
        cin>>n;
        kase++;
        printf("Case #%d:\n",kase);
        for(int i=1;i<=n;i++) scanf("%I64d",&a[i]);
        int cnt=gauss();
        LL tmp=(1LL<<cnt);
        if(cnt==n) tmp--;
        int k;
        cin>>k;
        while(k--){
            LL x;
            scanf("%I64d",&x);
            if(x>tmp) printf("-1\n");
            else{
                if(n>cnt) x--;
                LL ans=0;
                for(int i=0;i<cnt;i++){
                    if((x>>i)&1) ans^=a[cnt-i];
                }
                printf("%I64d\n",ans);
            }
        }
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值