c语言牛顿法求整数平方根,以牛顿法求整数开平方根的近似值详全文.doc

这篇博客介绍了如何使用牛顿法来求解整数开平方根的近似值,强调了近似计算在实际应用中的重要性。文章通过实例展示了牛顿法的迭代过程,指出其相较于其他方法如十分逼近法在效率上的优势,即误差以指数方式减小。此外,建议教师将牛顿法作为教学内容,让学生通过实践体验迭代与收敛的概念,并与计算器结果进行比较。
摘要由CSDN通过智能技术生成

以牛頓法求整數開平方根的近似值

張海潮教授/臺灣大學數學系

朱啟台助理/數學學科中心

面對95學年度正式實施的數學新課程,撇開刪去的和教學次序調整的不談,老師們最關心的還是新增了哪些題材。除了統計單元之外,或許有些老師覺得微積分的內容也作了不少改變,但基本上95年版的微積分課程只是將73年版的內容作了一定程度的回復,應該不致於增加老師的負擔。

關於微積分課程的設計理念,翁秉仁教授在《談「數學(II)」課程綱要》已有完整說明,本文焦點將放在微積分課程的一個小角落,也就是「選修數學(II)」的附錄二「以牛頓法求整數開平方根的近似值」。

學完多項式之後,高中生解得出的多項方程式仍然很有限,除了一次與二次可以運用公式解以外,三次以上的方程式只能用勘根定理碰碰運氣。如果我們願意面對真相,其實高中生對二次方程式的掌握也是有限的,一元二次方程式的兩根為,通常要在係數經過特別設計的情況下,方程式的根才會是有理數,才能真的用我們熟悉的分數表達。就實用的觀點來看,無理數其實並不常見。

舉個例子來說,工廠無法保證生產一批半徑全部都是根號2公分的螺絲,事實上也不需要,客戶可能只要求整批螺絲的半徑介於1.4±0.1公分之間,換句話說,在日常生活中,近似比完美更實用。因此,我們希望高中生學會欣賞近似的概念,並學會一些有效率的近似方法,牛頓求根法剛好是達成這種學習目標的好途徑。

假設我們想計算的近似值,我們可以考慮這個方程式,如圖,方程式的兩根為。

在進入牛頓法之前,我們先回憶一下如何用十分逼近法來估計。一開始先估計整數位,因為,所以的整數部分是1。接下來,因為,所以。

換句話說,求近似值是一個動態的過程,每走一步,就離精確值更近一點,事實上,不論我們希望多麼靠近都辦得到,只要多走幾步就行了。當我們比較不同的近似方法孰優孰劣時,就是在比較逼近速度,也就是說,誰可以用比較少的腳步或比較少的時間達到相同的準確度。

現在,我們就來看看牛頓法怎麼估計。如圖,先在的右方隨便挑一個數a當成的近似值,第1步取多少並不是太重要,重要的是如何從第1步得到第2步,再從第2步得到第3步,然後以此類推。

挑出的第1個近似值a之後,我們從作一切線,這個切線和x軸的交點b就是的第2個近似值。像這樣子,從每一個近似值可以引出一條切線,這條切線和x軸的交點就是下一個近似值。

直觀上我們可以看出,這個近似的程序確實會越來越接近,但這並不稀奇,這是所有近似方法的必要條件,即使是十分逼近法這種沒有效率的方法也有這個性質,我們想知道牛頓法的效率如何?

首先注意到

因此,近似值b和真值的誤差為

我們發現,第2步的誤差可直接從第1步的誤差看出來,粗略地說,如果第1步的誤差是0.1,則第2步的誤差大約是0.1的平方0.01;如果第1步的誤差是0.01,則第2步的誤差大約為0.01的平方0.0001。

可以這樣說,十分逼近法每走一步,其精確程度只能增加1個小數位,是個等速運動。但牛頓法每走一步,其精確位數的增加幅度會越來越大,下一步的精確位數是前一步的2倍,精確位數呈指數型態成長。

最後就讓我們以(=1.414213562373095048801688724209…)作為例子來體會一下牛頓法的威力。

,取的第1個近似值為1.5(在的右方),於是

我們不妨將上述程序稍微修改一下,一方面可以減少計算負擔,一方面也更容易看出精確度的成長狀況:

這個例子的計算量雖然很大,但計算公式卻很簡單,若配合電腦軟體進行操作,可以讓學生很自然地體會迭代與收斂的意義。最後,在學生理解牛頓法這個方法之後,老師們不妨用 作為習題讓學生練習,並將估計結果和電算器得出的結果加以比較。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值