牛顿迭代法求平方根倒数

        牛顿迭代法,第二次看了,发现几乎又是从头开始搜集资料,不如整理记录一下,也和大家分享一下;

        牛顿迭代法的核心思想是:切线是曲线的线性逼近,通过迭代求切线最后找到函数近似解的过程。具体可以参考下面这个文章,图示画的很容易理解。

牛顿迭代法求平方根(通俗易懂版)_付石头的博客-CSDN博客_迭代法求平方根

        既然理解和其核心思想,那么就开始进行公式推导:

        对上图求f(x)的零点x0即:f(x)=0的解,由牛顿迭代的核心思想可知,x^{_{k+1}}是比x^{_{k}}更靠近x^{_{0}}的点;那么x^{_{k+1}}x^{_{k}}直接的关系可以描述为f^{_{'}}(x^{_{k}})=\frac{f(x^{_{k}}))}{x^{_{k+1}}-x^{_{k}}}  斜率等于tan角。从而推导出牛顿迭代法的核心公式:

         而对于求解y=\frac{1}{\sqrt{x}},我们是知道x的,因此y是未知数,即求解的值。因此可得:

 将其带入牛顿迭代公式得:

         在进行平方根倒数求解的时候,初值的选择有一个大而神秘的讲究,有一个魔法数字大大提升了迭代效率,可以参考如下文章,或者Lomont的论文《Fast Inverse Square Root》。

0x5f375a86魔法数字_「已注销」的博客-CSDN博客

 将上式的y提出来,得到下图代码中的

 其中f表示浮点数float,对此式迭代一次精度会有损失,计算速度快,选择迭代两次精度会大大提高,计算速率慢。此方法也经常用到芯片设计中对数求平方根的倒数,只需要两次迭代即可求出。

float isqrt_nosse(float x) 
{
	float xh = 0.5f * x;
	std::int32_t i = *(std::int32_t*) &x;
	// "magic number" which makes a very good first guess
	i = 0x5f375a86 - (i >> 1);
	x = *(float*) &i;
	// Newton's method. One iteration for less accuracy but more speed.
	x = x * (1.5f - xh * (x * x));
	return x;
}
 

 

 

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值