BZOJ4771 七彩树(dfs序+树上差分+主席树)

  考虑没有深度限制怎么做。显然的做法是直接转成dfs序上主席树,但如果拓展到二维变成矩形数颜色数肯定没法做到一个log。

  另一种做法是利用树上差分。对于同种颜色的点,在每个点处+1,dfs序相邻点的lca处-1,那么查询子树颜色数就只需要查询子树和了。

  然后加上深度限制。考虑将点一层层加进去,利用set查找dfs序中前驱后继同色点,对dfs序建线段树实现动态树上差分。于是再对深度建主席树就可以在线回答询问了。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<set>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
int T,n,m,color[N],deep[N],size[N],fa[N][19],p[N],dfn[N],id[N],root[N],t,cnt,lastans;
vector<int> a[N];
set<int> c[N];
struct data{int to,nxt;
}edge[N<<1];
struct data2{int l,r,x;
}tree[N<<6];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
    dfn[k]=++cnt,id[cnt]=k,size[k]=1;a[deep[k]].push_back(k);
    for (int i=p[k];i;i=edge[i].nxt)
    if (edge[i].to!=fa[k][0])
    {
        deep[edge[i].to]=deep[k]+1;
        dfs(edge[i].to);
        size[k]+=size[edge[i].to];
    }
}
int lca(int x,int y)
{
    if (deep[x]<deep[y]) swap(x,y);
    for (int j=18;~j;j--) if (deep[fa[x][j]]>=deep[y]) x=fa[x][j];
    if (x==y) return x;
    for (int j=18;~j;j--) if (fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j];
    return fa[x][0];
}
void add(int &k,int l,int r,int p,int x)
{
    tree[++cnt]=tree[k],k=cnt;tree[k].x+=x;
    if (l==r) return;
    int mid=l+r>>1;
    if (p<=mid) add(tree[k].l,l,mid,p,x);
    else add(tree[k].r,mid+1,r,p,x);
}
int query(int x,int y,int L,int R,int l,int r)
{
    if (!y) return 0;
    if (L==l&&R==r) return tree[y].x-tree[x].x;
    int mid=L+R>>1;
    if (r<=mid) return query(tree[x].l,tree[y].l,L,mid,l,r);
    else if (l>mid) return query(tree[x].r,tree[y].r,mid+1,R,l,r);
    else return query(tree[x].l,tree[y].l,L,mid,l,mid)+query(tree[x].r,tree[y].r,mid+1,R,mid+1,r);
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj4771.in","r",stdin);
    freopen("bzoj4771.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    T=read();
    while (T--)
    {
        n=read(),m=read();
        for (int i=1;i<=n;i++) color[i]=read();
        memset(p,0,sizeof(p)),t=0;
        for (int i=2;i<=n;i++) addedge(fa[i][0]=read(),i);
        fa[1][0]=1;deep[1]=1;cnt=0;
        for (int i=1;i<=n;i++) a[i].clear(),c[color[i]].clear();
        dfs(1);
        for (int j=1;j<19;j++)
            for (int i=1;i<=n;i++)
            fa[i][j]=fa[fa[i][j-1]][j-1];
        root[0]=cnt=0;
        for (int i=1;i<=n;i++)
        {
            root[i]=root[i-1];
            for (int j=0;j<a[i].size();j++)
            {
                int x=a[i][j];
                add(root[i],1,n,dfn[x],1);
                c[color[x]].insert(dfn[x]);
                set<int>::iterator it=c[color[x]].find(dfn[x]);
                int pre=0,suf=0;
                it++;if (it!=c[color[x]].end()) suf=*it;it--;
                if (it!=c[color[x]].begin()) it--,pre=*it;
                if (pre&&suf) add(root[i],1,n,dfn[lca(id[pre],id[suf])],1);
                if (pre) add(root[i],1,n,dfn[lca(id[pre],x)],-1);
                if (suf) add(root[i],1,n,dfn[lca(id[suf],x)],-1);
            }
        }
        lastans=0;
        while (m--)
        {
            int x=read()^lastans,d=read()^lastans;
            printf("%d\n",lastans=query(root[deep[x]-1],root[deep[x]+d],1,n,dfn[x],dfn[x]+size[x]-1));
        }
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/Gloid/p/9965367.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值