LOJ 147 DFS序+ST表求LCA+树上差分

题目链接

理解链接

①先用dfs序或欧拉序把树转成区间,因为dfs序是前序遍历,根节点总在前面,而子树结点数,可以dfs时回溯求得,因此dfs序可以轻松维护子树的信息

②然后用树状数组维护每个点到根的距离(通过前缀和求),这题用树状数组因为只涉及区间加减的修改,复杂度常数比线段树小。(但树状数组局限性大,不支持乘除等复杂的修改)

③最后如何求两点距离?树上差分(通俗理解,前缀和or子树和)的思想,如果是边权,减两个LCA。这里是点权,减lca和一个fa【lca】

    树上差分思想见链接   链接2  

 

几点小Tips:

补习链接:ST表     ST表+欧拉序求LCA   

①用ST表求LCA一定用的是欧拉序,但我ST表忘了初始化,还有i、j写反莫名WA了几次…

②如果用dfs序,要记录子树结点数(也可维护欧拉序,记录第二次访问该结点得到的映射序列位置(也就是我代码中的out【】))

③w数组和树状数组,add参数一定要long long!不然莫名WA

 

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn = 2000006;
struct {
    int to, next, w;
} e[maxn << 2];

int head[maxn << 1], edgeNum;
void add(int u, int v) {
    e[++edgeNum].to = v;
    e[edgeNum].next = head[u];
    head[u] = edgeNum;
}

int in[maxn], dfn[maxn], n, cnt, cnt2, m, R, deep[maxn], fa1[maxn];
ll w[maxn];
struct aaa {
    ll S[maxn];
    void add(int x, ll c) {
        while (x <= n) S[x] += c, x += x & -x;
    }
    ll Sum(int x) {
        ll res = 0;
        while (x > 0) res += S[x], x -= x & -x;
        return res;
    }
} st1, st2;
// ll S[3][maxn];
int siz[maxn];
void init() {
    // memset(head,-1,4*n+4);
    cnt = edgeNum = 0;
}

// ST求LCA
int minl[25][maxn], lg[maxn];
int tmp;
inline void S_table() {
    for (int i = 1; i <= cnt; ++i) lg[i] = (1 << (lg[i - 1] + 1)) <= i ? lg[i - 1] + 1 : lg[i - 1];
    for (int j = 1; (1 << j) <= cnt; ++j)
        for (register int i = 1; i + (1 << j) - 1 <= cnt; ++i) {
            minl[j][i] = deep[minl[j - 1][i]] < deep[minl[j - 1][i + (1 << (j - 1))]]
                             ? minl[j - 1][i]
                             : minl[j - 1][i + (1 << (j - 1))];
           
        }
}

inline int lca(int l, int r) {
    if (l > r)
        swap(l, r);
    int k = lg[r - l + 1];
    // int k = log2((double)(r-l+1));
    int mid = r - (1 << k) + 1;
    // return min(minl[l][k],minl[mid][k]);
    return deep[minl[k][l]] < deep[minl[k][r - (1 << k) + 1]] ? minl[k][l]
                                                                      : minl[k][r - (1 << k) + 1];
}



ll query(int x) {
    if (x == 0)
        return 0;

    return st1.Sum(dfn[x]) + (deep[x] + 1) * st2.Sum(dfn[x]) + w[x]; 
}
void dfs(int u) {
    in[u] = ++cnt;
    w[u] += w[fa1[u]];
    deep[u] = deep[fa1[u]] + 1;
    minl[0][cnt] = u;
    dfn[u] = ++cnt2;
    siz[u] = 1;
    for (int i = head[u]; i; i = e[i].next) {
        int v = e[i].to;
        if (v == fa1[u])
            continue;
        fa1[v] = u;
        dfs(v);
        // out[u] = ++cnt;
        minl[0][++cnt] = u;
        siz[u] += siz[v];
    }
}
int main() {
    scanf("%d%d%d", &n, &m, &R);
    for (int i = 1; i <= n; ++i) scanf("%lld", &w[i]);
    for (int i = 0, u, v; i < n - 1; ++i) scanf("%d%d", &u, &v), add(u, v), add(v, u);

    dfs(R);  //等于自己dfs会加多
    S_table();

    for (int i = 0, p, u, v; i < m; ++i) {
        scanf("%d%d%d", &p, &u, &v);  // 0单点更值
        if (p == 1)
            st1.add(dfn[u], v), st1.add(dfn[u] + siz[u], -v);
        else if (p == 2) {  // 1 值*dep
            st1.add(dfn[u], -1ll * v * (deep[u])), st1.add(dfn[u] + siz[u], 1ll * v * (deep[u]));
            st2.add(dfn[u], v), st2.add(dfn[u] + siz[u], -v);  // 2 个数
        } else {
            int L = lca(in[u], in[v]);
            //区间查询,树上差分
            printf("%lld\n", query(u) + query(v) - query(L) - query(fa1[L]));
        }
        // printf("%lld\n",query(u));//单点查询
    }
}

 

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值