二项分布。计算binomial(100,50,0.25)将会产生的递归调用次数(算法第四版1.1.27)...

算法第四版35页问题1.1.27,估计用一下代码计算binomial(100,50,0.25)将会产生的递归调用次数:

public static double binomial(int n,int k,double p){
   if(n == 0 && k == 0) return 1.0;
   if(n<0 || k<0) return 0.0;
   return (1.0-p)*binomial(n-1,k,p) +p*binomial(n-1,k-1,p)      
}

虽然书上只让估计调用次数,但是觉得想知道到底调用了几次。

 

我用图画出递归调用的情况

 

可以看出递归中有很多重复调用比如,第4层递归 分别调用了binomial(n-3,k-1,p)和binomial(n-3,k-2,p)三次。这就是这个算法效率低的原因。可以看出重复调用的次数是一个杨辉三角

根据杨辉三角的性质,

第m层递归函数被调用的情况为:

第m层第x(x<=m)项为:

但是有些调用实际上不会发生,结合函数的返回条件:

if(n == 0 && k == 0) return 1.0;
if(n<0 || k<0) return 0.0;

 

设我们传入的初始参数为n=N,k=K 则,可以得出已下结论:

  1. 当m=N+1且x=K+1时,满足程序退出的第一个条件;
  2. 当m>N+1或x>K+1时,满足程序退出的第二个条件(根据杨辉三角的性质,第m行有m项,所有此时有K+1<x<=m)

让我们看看满足以上结论的详细项:

  1.下列递归调用的x>K+1,满足结论2:

    •   m=K+2行的第K+2项:
    •   m=K+3行的第K+2项到K+3项:
    •   ……
    •   m=N+1行的第K+2项到最后一项:

  2.m=N+1行的第K+1项递归调用的第一个参数n和第二个参数k均为0,满足结论1。

  3.当m=N+2时,显然m>N+1,满足结论2;

 

如果调用参数满足函数退出条件,那么由调用的递归实际上就不会发生,数量为的系数✖️2。

N+2之后的递归都不会发生,所以做计算时只考虑到N+2层。N+2层的无效调用数量,为N+1层满足结论1或2的调用的数量*2,一次类推,直到K+3层的无效调用数量,为K+2层满足结论1或2的调用数量*2;K+2层到1层上,所有调用都有效;因为K+1层到1层,没有调用满足结论1或2.

根据杨辉三角的性质:从第1层到第N+2层所有的系数和为 

 

其中不会实际发生的调用次数为从(K+2层到N+1层):

化简之后为:

再次化简

所以最后程序递归调用的总次数为

 

运行随机验证几个组合,可以证明上述公式是正确的!

 

转载于:https://www.cnblogs.com/qiutianlaile/p/9222426.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值