964. Least Operators to Express Number

除法除了构成1,是没有作用的。

本题可以转化为,用 x/x,x,x*x,x*x*x,... 构建target。

由于题目中限定target为正数,因此肯定有一项为正,我们可以调整位置是的正项放在最前面。对于每一项,考虑前面的符号,我们可以得到构成这些项所需的符号数。第一项的正号是不需要的,因此最后答案-1即可。

target = c0x^0 + c1x^1 + c2x^2 + ... + cnx^n,其中 | ci | < x,因为如果大于x,可以重写等式。

如果我们每次计算 r = target % x,我们有两种选择,加上 r*对应项的操作,或者减去 (x-r)*对应项的操作。

可以看几个例子 https://leetcode.com/problems/least-operators-to-express-number/solution/

因此递归的时候也需记录当前处理的是哪一项,用i表示。

f(i,target) = min( r*cost(i)+f(i+1,t),  (x-r)*cost(i)+f(i+1,t+1) )

递归终止条件比较复杂,首先如果 target=0,返回0

如果 target=1,直接返回cost(i),否则会死循环。

还有就是递推的时候,如果整除了,那我们肯定没必要再 (x-r)*cost(i)+f(i+1,t+1)

bottom up dp 比较困难,直接 top down 加个 memo,效率也会更高一些。

class Solution {
public:
    unordered_map<string,int> memo;
    int x;
    
    int leastOpsExpressTarget(int x, int target) {
        this->x = x;
        return f(0,target)-1;
    }
    
    int f(int i, int target){
        string encoded=to_string(i)+' '+to_string(target);
        if (memo.count(encoded)) return memo[encoded];
        
        int res;
        if (target==0) res=0;
        else if (target==1){
            return cost(i);
        }else{
            int t=target/x;
            int r=target%x;
            res = r*cost(i) + f(i+1,t);
            if (r!=0) res=min(res, (x-r)*cost(i) + f(i+1,t+1));
        }
        return memo[encoded]=res;
    }
    
    int cost(int i){
        if (i==0) return 2; // +x/x
        else return i;
    }
};

时间复杂度 O(logx(target))

 

一道比较类似的题:

https://leetcode.com/discuss/interview-question/371592/Google-or-Onsite-or-Min-Number-of-Powers-of-2-to-Get-an-Integer

转载于:https://www.cnblogs.com/hankunyan/p/11450798.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值