poj 3304 题解

题意:给出n条线段,判断是否存在一条直线,使所有线段在该直线上的投影有公共点,是则输出“Yes!”,否则输出“No!”

  1<=n<=100,多组测试数据

题解:题目可转化为是否存在一条直线与所有线段都相交(这条直线与题目中所要求的直线垂直)。假如存在这样一条直线,我们显然可以通过移动这条直线使得它与某两条线段的某两个端点相交,则直接枚举线段端点,判断是否符合条件即可,复杂度O(n3)

特判:距离小于1e-8的点视为重合、n=1时一定成功

 

写的时候犯了不少错误,最后的代码乱糟糟的

 

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

#define rep(i,a,b) for(int i=a;i<=b;++i)

const double eps=1e-8;

struct point{
    double x,y;
    point(){}
    point (double a,double b): x(a),y(b) {}

    friend point operator + (const point &a,const point &b){
        return point(a.x+b.x,a.y+b.y);
    }

    friend point operator - (const point &a,const point &b){
        return point(a.x-b.x,a.y-b.y);
    }

    friend bool operator == (const point &a,const point &b){
        return (abs(a.x-b.x)<eps && abs(a.y-b.y)<eps);
    }

};

inline double det(point a,point b) {return a.x*b.y-a.y*b.x;}
inline bool line_cross_segment(point s,point t,point a,point b)
{
    return !(det(s-a,t-a)*det(s-b,t-b)>eps);
}

point s[200][2];
double sx,sy,tx,ty;
int t,n;


bool test(int x,int y)
{
    point ts,tt;
    bool flag=false;
    rep(i,0,1)
    {
        rep(j,0,1) if (!(s[x][i]==s[y][j]))
            {
                flag=true;
                ts=s[x][i];tt=s[y][j];
                rep(k,1,n)
                    if (!line_cross_segment(ts,tt,s[k][0],s[k][1]))
                    {
                        flag=false;
                        break;
                    }
                if (flag) break;
            }
        if (flag) break;
    }
    if (flag) return true;
        else return false;
}

int main()
{
    scanf("%d",&t);
    bool flag;
    while (t--)
    {
        scanf("%d",&n);
        flag=false;
        rep(i,1,n)
            {
                scanf("%lf%lf%lf%lf",&sx,&sy,&tx,&ty);
                s[i][0]=point(sx,sy);s[i][1]=point(tx,ty);
            }
        if (n<=2) {printf("Yes!\n");continue;}
        rep(i,1,n)
        {
            rep(j,i+1,n)
                if(test(i,j)) {flag=true;break;}
            if (flag) break;
        }
        if (flag) printf("Yes!\n");else printf("No!\n");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/terra/p/7001881.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值