Android android:allowBackup waiting for backup 在Google settings 中,有个backup 选项,在里面选择开启如果开启vpn,还是在setting里面还是waiting for backup, 就通过手机链接电脑,安装android sdk。通过adb backup1 adb shell bmgr backupnow --all通过android 开发文档查看:backup的文件包含:By def...
plsql使用pdc方式执行大量sql脚本 就在这两天有一个迁移数据需要导入到现系统中的场景,数据不多1100条左右,可能字段数量比较多,不知道为什么同事直接粘到plsql中卡好久才能执行了。我试了一试也是这样,虽然我认为这个量不应该卡,还是去寻找了解决方案。首先你的sql语句需要粘贴到sql文件脚本中,然后在脚本文件同目录下,新建一个xxx.pdc的文件,后缀是重点然后像我上图这样,文本中需要写@@要执行的s...
VMware虚拟机IP地址老是改变解决办法 1. 点击菜单栏中的编辑按钮 2. 选择虚拟网络编辑器 3. 选择正在使用的连接模式(一般是192.168.152.0的这个,选择后点击下方的DHCP设置) 4. 将租用时间设置长一点即可 转载于:https://www.cnblogs.com/wangyusu/p/11405086.html...
网页静态文件不重新加载 1. 按F12打开我们的网页控制台(或者右键网页点击检查) 会出现如下图所示:(我们选中Network) 2. 勾选上下图两个选项(阻止浏览器自动缓存,我们的静态文件就会实时刷新了) 转载于:https://www.cnblogs.com/wangyusu/p/11342994.html...
用户注册(二)之用户信息校验 五、用户名校验是否注册 1. 接口设计 1)接口说明 (?pgroup)这个格式的意思,在正则中是指给匹配到的group组名命名一个名称,且该名称是唯一的 例如:(?p\d{4}) 是匹配带有4个数字的, (?p\w{4}) 是匹配带有4个字母的。 \w{5,20...
用户注册(一)之注册页面以及图形验证码 一、用户模型设计(用户表的设计) 1. 用户表字段分析 1)用户名 2)密码 3)手机号 4)邮箱 5)邮箱是否有效 2. 用户模型设计 django设计模型开发效率极高,内置了许多功能,包括权限验证等等,也有自定义的User模型。 因此我们需要继承已经写好的抽象模型类AbstractBaseUser...
django项目环境搭建 一、创建django项目 1. 创建python解释器mkvirtualenv -p /usr/bin/python3.6 tzproject #创建一个叫tzproject的虚拟环境 2. 创建python项目 1)安装djangopip install django==2.1.10 # 下载2.1.10版本的d...
git学习简单操作 一、使用原因及来源 1. 方便版本控制 2. 方便多人协助开发 3. linux之父:Linus Torvalds 4. git开发目的:为了辅助Linux内核的开发 5. Git迅速成为了最流行的分布式版本控制系统 6. 码云官方网址:https://gitee.com/ 7. git是分布式管理系统,服务端和客户端都有版本控制功能,都能进...
使用django制作的小的博客案例(一) 一、创建django项目 1. 查看虚拟环境 命令: workon 2. 进入使用的虚拟环境 命令:workon hello_django 其中 hello_django可以换成任意你使用虚拟环境 3. 查看已有的第三方库 命令:pip list 4. 创建项目 命令:django-a...
[不知道出自什么OJ]最大利润 题目描述政府邀请了你在火车站开饭店,但不允许同时在两个相连接的火车站开。任意两个火车站有且只有一条路径,每个火车站最多有50个和它相连接的火车站。告诉你每个火车站的利润,问你可以获得的最大利润为多少。输入格式第一行输入整数N(N≤100000),表示有N个火车站,分别用1,2,... ,N来编号。接下来N行,每行一个整数(不超过10000)表示每个站点的利润。接下来N-...
P1985 [USACO07OPEN]翻转棋 题目链接:翻转棋题目分析:先状压/\(dfs\)枚举第一排状态,然后在每个\(1\)下面翻,即确定了第一排就确定了后面的状态最后验证一下最后一排是不是全0即可代码:#include<bits/stdc++.h> #define N 50using namespace std;inline int read() { int cnt = 0, f = 1...
2019/10/3 CSP-S 模拟测 T1 Permut题意:求\(1 - n\)的排列中逆序对数量为\(k\)的排列的个数SOL:排除法我们知道一定不是\(O(n!)\)的算法考虑\(dp\),现在已经有\(n-1\)的答案了,考虑新加入一个数产生多少新的逆序对设\(dp[i][j]\)表示\(1 -i\)的排列有\(j\)个逆序对的数量,考虑新加入的数插在哪里会增加多少逆序对数量有\[dp[i][j] = ...
P1156 垃圾陷阱 题目链接:垃圾陷阱题目分析:\(dp\),思路和题解大部分有点区别,建议按洛谷题解写,这个有点丑看成\(0/1\)背包之后发现是菜题先假设牛把有命吃到的垃圾全都食下去了,然后记成生命值按时间消耗设\(dp[i][j]\)表示处理到第\(i\)个垃圾,生命值还剩\(j\)时的最高高度具体方程看代码,懒得打\(LaTeX\)了代码:#include<bits/stdc...
[USACO08FEB]修路Making the Grade 题目链接:走这里题目分析:考虑绝对值的几何意义,显然\(b\)里的数一定在\(a\)里出现过离不离散化问题不大,用下标作第二位状态就行设\(dp[i][j]\)表示第\(i\)个数,高度为\(a[j]\)时的最优解方程见代码代码:#include<bits/stdc++.h>#define int long long#define N (2000 + 10...
奶酪 题目链接:奶酪题目分析:并查集维护联通,最好乘起来防止掉精度代码:#include<bits/stdc++.h>#define int long long#define eps 1e-8#define N (5000 + 10)using namespace std;inline int read() { int cnt = 0; int ...
扫描线 建议移步fsy的博客讲的比较清楚注意判一下边界条件丢个板\(2019/10/3 UPD:\)还是决定过来补一个档,讲得可能比较略我们知道扫描线是用来求解矩形面积并的,那么我们考虑维护一根直线从左到右(或从下到上)扫过整个平面,那么显然直线被矩形们覆盖的长度只在每次经过一个矩形的边界时才会改变对于每次长度的改变分开考虑设每一段被矩形覆盖的长度为\(a_i\),扫过(即存在过...
[ZOJ1002] Fire Net 题目链接:走这里题目分析:联想到Asteroids这道题,将行和列分别作为二分图的两边的点,把点本身作为二分图的边去处理那么这个题的限制条件打不穿的墙怎么处理呢,发现这样的话\[ ...X.. \]其实左边那段和右边那段在横着考虑的时候是互不影响的,不妨对行和列重新编号用一下某题解的剪枝讲解的图,样例第一个大概就是这个样子然后对于每个空地的行编号和列编号连一条边,当空地...
[luogu P1967] 货车运输 题目链接:货车运输题目分析:kruscal+树剖板套板首先在一个连通块里的两个点之间的路径上边权最小值的最大值(有点绕)一定在最大生成树上,因为最大生成树使新图连通且边权最大然后在最大生成树上树剖/倍增求两点路径中的最小值即可,注意边权下放到点后查询时要跳过\(LCA\)图可能不连通(\(\#21\)即是不连通的情况),此时需要对每棵\(BST\)的根\(dfs\)一遍代码...
洛谷P2890 [USACO07OPEN]便宜的回文Cheapest Palindrome 题目链接:点我题目分析:玄学\(dp\)设\(val[s[i] - 'a' + 1]\)表示字母\(s[i]\)的花费首先发现对于一个已经回文了的串\(s[i, j]\),在\(s[i - 1]\)的位置上删去和在\(s[j + 1]\)的位置上加上本质上是一样的,所以\(val[s[i] - 'a' + 1]\)直接取增删的最小即可设\(dp[i][j]\)表示把\(s[i...