すぬけ君の地下鉄旅行 / Snuke's Subway Trip
Time limit : 3sec / Memory limit : 256MB
Score : 600 points
Problem Statement
Snuke's town has a subway system, consisting of N stations and M railway lines. The stations are numbered 1 through N. Each line is operated by a company. Each company has an identification number.
The i-th ( 1≤i≤M ) line connects station pi and qi bidirectionally. There is no intermediate station. This line is operated by company ci.
You can change trains at a station where multiple lines are available.
The fare system used in this subway system is a bit strange. When a passenger only uses lines that are operated by the same company, the fare is 1 yen (the currency of Japan). Whenever a passenger changes to a line that is operated by a different company from the current line, the passenger is charged an additional fare of 1 yen. In a case where a passenger who changed from some company A's line to another company's line changes to company A's line again, the additional fare is incurred again.
Snuke is now at station 1 and wants to travel to station N by subway. Find the minimum required fare.
Constraints
- 2≤N≤105
- 0≤M≤2×105
- 1≤pi≤N (1≤i≤M)
- 1≤qi≤N (1≤i≤M)
- 1≤ci≤106 (1≤i≤M)
- pi≠qi (1≤i≤M)
Input
The input is given from Standard Input in the following format:
N M p1 q1 c1 : pM qM cM
Output
Print the minimum required fare. If it is impossible to get to station N by subway, print -1
instead.
Sample Input 1
3 3 1 2 1 2 3 1 3 1 2
Sample Output 1
1
Use company 1's lines: 1 → 2 → 3. The fare is 1 yen.
分析:根据贪心思想,从一个点到另一个点必然是从之前点最小花费转移过来的,否则不会更优;
所以每个点维护最小花费和到达前的公司id,用最短路拓展即可;
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <map> #include <queue> #include <stack> #include <vector> #include <list> #define rep(i,m,n) for(i=m;i<=n;i++) #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++) #define mod 1000000007 #define inf 0x3f3f3f3f #define vi vector<int> #define pb push_back #define mp make_pair #define fi first #define se second #define ll long long #define pi acos(-1.0) #define pii pair<int,int> #define Lson L, mid, rt<<1 #define Rson mid+1, R, rt<<1|1 const int maxn=1e5+10; using namespace std; ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);} ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;} int n,m,k,t,h[maxn],tot,ans[maxn]; set<int>comp[maxn]; struct node { int to,nxt,com; }e[maxn<<2]; void add(int x,int y,int z) { tot++; e[tot].to=y; e[tot].com=z; e[tot].nxt=h[x]; h[x]=tot; } priority_queue<pair<int,int> >p; int main() { int i,j; memset(ans,inf,sizeof ans); scanf("%d%d",&n,&m); while(m--) { int a,b,c; scanf("%d%d%d",&a,&b,&c); add(a,b,c); add(b,a,c); } p.push({0,1});ans[1]=0; while(!p.empty()) { int now=p.top().se,ca=-p.top().fi; p.pop(); if(ans[now]<ca)continue; for(i=h[now];i;i=e[i].nxt) { int to=e[i].to,to_com=e[i].com; int to_ca=ca+(!comp[now].count(to_com)); if(ans[to]>to_ca) { ans[to]=to_ca; p.push({-to_ca,to}); comp[to].clear(); comp[to].insert(to_com); } else if(ans[to]==to_ca) { comp[to].insert(to_com); } } } printf("%d\n",ans[n]==inf?-1:ans[n]); //system("Pause"); return 0; }