【[国家集训队] Crash 的文明世界】

先写一个五十分的思路吧

首先这道题有一个弱化版

[POI2008]STA-Station

相当于\(k=1\),于是就是一个非常简单的树形\(dp\)\(up\ \ and\ \ down\)思想

但是我们现在要求的是这个柿子了

\[\sum_{j=1}^ndis(i,j)^k\]

感觉这个东西很组合数学啊,感觉这个柿子像是天生为二项式定理准备的

我们还是考虑树形\(dp\)

在第一遍\(up\)的时候,我们设\(dp[i][k]\)表示

\[\sum_{j\in{i}}dis(i,j)^k\]

\(j\in{i}\)表示\(j\)\(i\)子树内部

于是我们考虑一下化这个柿子

到达\(i\)肯定要先达到\(i\)的一个儿子,于是就有

\[dp[i][k]=\sum_{fa[j]=i}\sum_{t\in{j}}(dis(t,j)+1)^k\]

我们用二项式定理来将这个柿子展开

\[dp[i][k]=\sum_{fa[j]=i}\sum_{t\in{j}}\sum_{r=0}^kC_{k}^{r}*dis(t,j)^r\]

后面两个\(\sum\)换一下位置

\[dp[i][k]=\sum_{fa[j]=i}\sum_{r=0}^kC_{k}^{r}*\sum_{t\in{j}}dis(t,j)^r\]

之后就会惊奇的发现\(\sum_{t\in{j}}dis(t,j)^r\)就是\(dp[j][r]\),于是现在就有了

\[dp[i][k]=\sum_{fa[j]=i}\sum_{r=0}^kC_{k}^{r}*dp[j][r]\]

这就是\(up\)的转移方程式,\(down\)的方程式也很好推

\(down\)的时候\(dp[i][k]\)表示的不仅局限于\(i\)的子树内部了,而是整棵树了

到达\(i\)首先要到达\(fa[i]\),于是就有

\[dp[i][k]+=\sum_{j\notin{i},j\in{fa[i]}}(dis(fa[i],j)+1)^k\]

\[dp[i][k]+=\sum_{j\notin{i},j\in{fa[i]}}\sum_{r=0}^kC_{k}^r*dis(fa[i],j)^r\]

我们的要求不就是\(j\)不能来自于\(i\)内部吗,于是我们大力容斥就好了

我们把来自于\(i\)子树内部的答案减掉,于是就有了一个可以更新的柿子了

现在就有了一个我们就可以转移了,复杂度大概是\(O(nk^2)\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
#define maxn 50005
#define int long long
const int mod=10007; 
inline int read()
{
    char c=getchar();
    int x=0;
    while(c<'0'||c>'9') c=getchar();
    while(c>='0'&&c<='9')
        x=(x<<3)+(x<<1)+c-48,c=getchar();
    return x;
}
struct E
{
    int v,nxt;
}e[maxn<<1];
int head[maxn],deep[maxn];
int n,m,num;
long long dp[maxn][151];
long long now[151];
long long c[151][151];
void dfs(int x)
{
    dp[x][0]=1;
    for(re int i=head[x];i;i=e[i].nxt)
    if(!deep[e[i].v])
    {
        deep[e[i].v]=deep[x]+1;
        dfs(e[i].v);
        dp[x][0]+=dp[e[i].v][0];
        for(re int k=1;k<=m;k++)
            for(re int r=0;r<=k;r++)
                dp[x][k]=(dp[x][k]+c[k][r]*dp[e[i].v][r])%mod;
    }
}
void redfs(int x)
{
    for(re int i=head[x];i;i=e[i].nxt)
    if(deep[e[i].v]>deep[x])
    {
        memset(now,0,sizeof(now));
        for(re int k=0;k<=m;k++)
        {
            now[k]=dp[x][k];
            for(re int r=0;r<=k;r++)
                now[k]=(now[k]-dp[e[i].v][r]*c[k][r]+mod)%mod;
        }//先容斥,不能来自于e[i].v子树内部
        for(re int k=0;k<=m;k++)
            for(re int r=0;r<=k;r++)
                dp[e[i].v][k]=(dp[e[i].v][k]+c[k][r]*now[r])%mod;//用容斥之后的答案来更新
        redfs(e[i].v);
    }
}
inline void add_edge(int x,int y)
{
    e[++num].v=y;
    e[num].nxt=head[x];
    head[x]=num;
}
signed main()
{
    n=read(),m=read();
    int x,y;
    for(re int i=1;i<n;i++)
        x=read(),y=read(),add_edge(x,y),add_edge(y,x);
    c[0][0]=1;
    for(re int i=1;i<=m;i++) c[i][0]=c[i][i]=1;
    for(re int i=1;i<=m;i++)
        for(re int j=1;j<i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
    deep[1]=1;
    dfs(1);
    redfs(1);
    for(re int i=1;i<=n;i++)
        printf("%lld\n",(dp[i][m]%mod+mod)%mod);
    return 0;
}

这是一个要T的复杂度,但是已经有了\(50\)分的好成绩

点分治据说可以做到\(O(nklogk)\),但是不会

我们继续组合数做吧

我们发现求\(x^k\)可以理解为把\(k\)个物品放到\(x\)个互不相同的盒子里,允许有盒子空着不放的方案数

于是我们可以写成\(x^k=\sum_{i=1}^kS(k,i)*C_{x}^i*i!\)

其中\(S(k,i)\)是第二类斯特林数,表示的是将\(k\)个球分到\(i\)个盒子里,这\(i\)个盒子没有差别,而且没有盒子是空的的方案数

\(C_{x}^i*i!\)其实就是排列数了,就相当于我们给\(i\)个盒子强行制造了差别

于是这个柿子可以理解为\(i\)枚举的是当前有几个盒子是有球的,之后通过加法原理合并了答案

其实我一开始觉得这里的\(\sum\)的上标应该写\(x\),好像也只有写\(x\)才满足组合的意义,之后发现自己非常naive

  1. \(k>x\)的时候显然是没有什么问题的了,因为\(\binom{x}{i}\)\(x>i\)的时候取0,于是没有什么影响

  2. \(k<x\)的时候,如果上标取到比\(k\)大的数了,那么也会导致\(S(k,i)\)变成\(0\),于是写成\(k\)就可以了,在数值上没有什么影响

之后我们继续化柿子

\[ans[t]=\sum_{j=1}^{n}dis(t,j)^k\]

\[=\sum_{j=1}^{n}\sum_{i=1}^kS(k,i)*\binom{dis(t,j)}{i}*i!\]

\[=\sum_{i=1}^{k}S(k,i)*i!*\sum_{j=1}^n\binom{dis(t,j)}{i}\]

那么我们现在只需要求出\(\sum_{j=1}^n\binom{dis(t,j)}{i}\)就好了

我们都知道组合数有一个非常好的转移的方式就是\(\binom{n}{m}=\binom{n-1}{m-1}+\binom{n-1}{m}\)

于是

\[\sum_{j=1}^n\binom{dis(t,j)}{i}=\sum_{j=1}^n\binom{dis(t,j)-1}{i-1}+\sum_{j=1}^n\binom{dis(t,j)-1}{i}\]

现在是不是又可以用树形dp来转移了,因为到达\(t\)这个点还是要先到达\(t\)的儿子或者是父亲

于是我们设\(dp[x][k]=\sum_{j\in{x}}\binom{dis(x,i)}{k}\)

于是在\(up\)里的方程式就是

\[dp[x][k]=\sum_{fa[j]=i}dp[j][k]+dp[j][k-1]\]

\(down\)里我们还是要先容斥一下,方程和\(up\)类似

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 50005
#define LL long long
const LL mod=10007;
inline int read()
{
    char c=getchar();
    int x=0;
    while(c<'0'||c>'9') c=getchar();
    while(c>='0'&&c<='9')
        x=(x<<3)+(x<<1)+c-48,c=getchar();
    return x;
}
struct node
{
    int v,nxt;
}e[maxn<<1];
int head[maxn],deep[maxn];
LL dp[maxn][151],fac[151],s[151][151];
LL now[151];
int n,m,num;
inline void add_edge(int x,int y)
{
    e[++num].v=y;
    e[num].nxt=head[x];
    head[x]=num;
}
void dfs(int x)
{
    dp[x][0]=1;
    for(re int i=head[x];i;i=e[i].nxt)
    if(!deep[e[i].v])
    {
        deep[e[i].v]=deep[x]+1;
        dfs(e[i].v);
        dp[x][0]+=dp[e[i].v][0];
        for(re int j=1;j<=m;j++)
            dp[x][j]=(dp[x][j]+dp[e[i].v][j-1]+dp[e[i].v][j])%mod;
    }
}
void redfs(int x)
{
    for(re int i=head[x];i;i=e[i].nxt)
    if(deep[e[i].v]>deep[x])
    {
        memset(now,0,sizeof(now));
        now[0]=dp[x][0]-dp[e[i].v][0];
        for(re int j=1;j<=m;j++)
            now[j]=(dp[x][j]-dp[e[i].v][j]-dp[e[i].v][j-1]+mod)%mod;
            //依旧是先容斥一遍
        dp[e[i].v][0]+=now[0];
        for(re int j=1;j<=m;j++)
            dp[e[i].v][j]=(dp[e[i].v][j]+now[j]+now[j-1])%mod;
        redfs(e[i].v);
    }
}
int main()
{
    n=read(),m=read();
    int x,y;
    for(re int i=1;i<n;i++)
        x=read(),y=read(),add_edge(x,y),add_edge(y,x);
    s[0][0]=1;
    for(re int i=1;i<=m;i++)
        s[i][1]=s[i][i]=1;
    for(re int i=1;i<=m;i++)
        for(re int j=1;j<i;j++)
            s[i][j]=(s[i-1][j-1]+s[i-1][j]*j)%mod;//预处理第二类斯特林数
    fac[0]=1;
    for(re int i=1;i<=m;i++)
        fac[i]=(fac[i-1]*i)%mod;//预处理阶乘
    deep[1]=1;
    dfs(1);
    redfs(1);
    for(re int i=1;i<=n;i++)
        for(re int j=1;j<=m;j++)
            dp[i][j]=(dp[i][j]%mod+mod)%mod;
    for(re int i=1;i<=n;i++)
    {
        LL ans=0;
        for(re int j=1;j<=m;j++)
            ans=(ans+s[m][j]*fac[j]%mod*dp[i][j])%mod;
        printf("%lld\n",ans);//统计答案
    }
    return 0;
}

转载于:https://www.cnblogs.com/asuldb/p/10205776.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
4S店客户管理小程序-毕业设计,基于微信小程序+SSM+MySql开发,源码+数据库+论文答辩+毕业论文+视频演示 社会的发展和科学技术的进步,互联网技术越来越受欢迎。手机也逐渐受到广大人民群众的喜爱,也逐渐进入了每个用户的使用。手机具有便利性,速度快,效率高,成本低等优点。 因此,构建符合自己要求的操作系统是非常有意义的。 本文从管理员、用户的功能要求出发,4S店客户管理系统中的功能模块主要是实现管理员服务端;首页、个人中心、用户管理、门店管理、车展管理、汽车品牌管理、新闻头条管理、预约试驾管理、我的收藏管理、系统管理,用户客户端:首页、车展、新闻头条、我的。门店客户端:首页、车展、新闻头条、我的经过认真细致的研究,精心准备和规划,最后测试成功,系统可以正常使用。分析功能调整与4S店客户管理系统实现的实际需求相结合,讨论了微信开发者技术与后台结合java语言和MySQL数据库开发4S店客户管理系统的使用。 关键字:4S店客户管理系统小程序 微信开发者 Java技术 MySQL数据库 软件的功能: 1、开发实现4S店客户管理系统的整个系统程序; 2、管理员服务端;首页、个人中心、用户管理、门店管理、车展管理、汽车品牌管理、新闻头条管理、预约试驾管理、我的收藏管理、系统管理等。 3、用户客户端:首页、车展、新闻头条、我的 4、门店客户端:首页、车展、新闻头条、我的等相应操作; 5、基础数据管理:实现系统基本信息的添加、修改及删除等操作,并且根据需求进行交流信息的查看及回复相应操作。
现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本微信小程序医院挂号预约系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息,使用这种软件工具可以帮助管理人员提高事务处理效率,达到事半功倍的效果。此微信小程序医院挂号预约系统利用当下成熟完善的SSM框架,使用跨平台的可开发大型商业网站的Java语言,以及最受欢迎的RDBMS应用软件之一的MySQL数据库进行程序开发。微信小程序医院挂号预约系统有管理员,用户两个角色。管理员功能有个人中心,用户管理,医生信息管理,医院信息管理,科室信息管理,预约信息管理,预约取消管理,留言板,系统管理。微信小程序用户可以注册登录,查看医院信息,查看医生信息,查看公告资讯,在科室信息里面进行预约,也可以取消预约。微信小程序医院挂号预约系统的开发根据操作人员需要设计的界面简洁美观,在功能模块布局上跟同类型网站保持一致,程序在实现基本要求功能时,也为数据信息面临的安全问题提供了一些实用的解决方案。可以说该程序在帮助管理者高效率地处理工作事务的同时,也实现了数据信息的整体化,规范化与自动化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值