题目描述
Let's denote a function
You are given an array aa consisting of nn integers. You have to calculate the sum of d(a_{i},a_{j})d(ai,aj) over all pairs (i,j)(i,j) such that 1<=i<=j<=n1<=i<=j<=n .
输入输出格式
输入格式:
The first line contains one integer nn ( 1<=n<=2000001<=n<=200000 ) — the number of elements in aa .
The second line contains nn integers a_{1}a1 , a_{2}a2 , ..., a_{n}an ( 1<=a_{i}<=10^{9}1<=ai<=109 ) — elements of the array.
输出格式:
Print one integer — the sum of d(a_{i},a_{j})d(ai,aj) over all pairs (i,j)(i,j) such that 1<=i<=j<=n1<=i<=j<=n .
输入输出样例
说明
In the first example:
- d(a_{1},a_{2})=0d(a1,a2)=0 ;
- d(a_{1},a_{3})=2d(a1,a3)=2 ;
- d(a_{1},a_{4})=0d(a1,a4)=0 ;
- d(a_{1},a_{5})=2d(a1,a5)=2 ;
- d(a_{2},a_{3})=0d(a2,a3)=0 ;
- d(a_{2},a_{4})=0d(a2,a4)=0 ;
- d(a_{2},a_{5})=0d(a2,a5)=0 ;
- d(a_{3},a_{4})=-2d(a3,a4)=−2 ;
- d(a_{3},a_{5})=0d(a3,a5)=0 ;
- d(a_{4},a_{5})=2d(a4,a5)=2 .
算法很简单,,,,但是TM的要高精度gg
#include<bits/stdc++.h>
#define maxn 200005
#define ll long long
using namespace std;
const int base = 1000000000;
const int base_digits = 9;
struct bigint {
vector<int> z;
int sign;
bigint() : sign(1) { }
bigint(long long v) { *this = v; }
bigint(const string &s) { read(s); }
void operator=(const bigint &v) {
sign = v.sign;
z = v.z;
}
void operator=(long long v) {
sign = 1;
if (v < 0)
sign = -1, v = -v;
z.clear();
for (; v > 0; v = v / base)
z.push_back(v % base);
}
bigint operator+(const bigint &v) const {
if (sign == v.sign) {
bigint res = v;
for (int i = 0, carry = 0; i < (int) max(z.size(), v.z.size()) || carry; ++i) {
if (i == (int) res.z.size())
res.z.push_back(0);
res.z[i] += carry + (i < (int) z.size() ? z[i] : 0);
carry = res.z[i] >= base;
if (carry)
res.z[i] -= base;
}
return res;
}
return *this - (-v);
}
bigint operator-(const bigint &v) const {
if (sign == v.sign) {
if (abs() >= v.abs()) {
bigint res = *this;
for (int i = 0, carry = 0; i < (int) v.z.size() || carry; ++i) {
res.z[i] -= carry + (i < (int) v.z.size() ? v.z[i] : 0);
carry = res.z[i] < 0;
if (carry)
res.z[i] += base;
}
res.trim();
return res;
}
return -(v - *this);
}
return *this + (-v);
}
void operator*=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < (int) z.size() || carry; ++i) {
if (i == (int) z.size())
z.push_back(0);
long long cur = z[i] * (long long) v + carry;
carry = (int) (cur / base);
z[i] = (int) (cur % base);
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
}
trim();
}
bigint operator*(int v) const {
bigint res = *this;
res *= v;
return res;
}
friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
int norm = base / (b1.z.back() + 1);
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.z.resize(a.z.size());
for (int i = a.z.size() - 1; i >= 0; i--) {
r *= base;
r += a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
int d = ((long long) s1 * base + s2) / b.z.back();
r -= b * d;
while (r < 0)
r += b, --d;
q.z[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return make_pair(q, r / norm);
}
friend bigint sqrt(const bigint &a1) {
bigint a = a1;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
int n = a.z.size();
int firstDigit = (int) sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
int norm = base / (firstDigit + 1);
a *= norm;
a *= norm;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
bigint r = (long long) a.z[n - 1] * base + a.z[n - 2];
firstDigit = (int) sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
int q = firstDigit;
bigint res;
for (int j = n / 2 - 1; j >= 0; j--) {
for (; ; --q) {
bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
if (r1 >= 0) {
r = r1;
break;
}
}
res *= base;
res += q;
if (j > 0) {
int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
q = ((long long) d1 * base * base + (long long) d2 * base + d3) / (firstDigit * 2);
}
}
res.trim();
return res / norm;
}
bigint operator/(const bigint &v) const {
return divmod(*this, v).first;
}
bigint operator%(const bigint &v) const {
return divmod(*this, v).second;
}
void operator/=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (int i = (int) z.size() - 1, rem = 0; i >= 0; --i) {
long long cur = z[i] + rem * (long long) base;
z[i] = (int) (cur / v);
rem = (int) (cur % v);
}
trim();
}
bigint operator/(int v) const {
bigint res = *this;
res /= v;
return res;
}
int operator%(int v) const {
if (v < 0)
v = -v;
int m = 0;
for (int i = z.size() - 1; i >= 0; --i)
m = (z[i] + m * (long long) base) % v;
return m * sign;
}
void operator+=(const bigint &v) {
*this = *this + v;
}
void operator-=(const bigint &v) {
*this = *this - v;
}
void operator*=(const bigint &v) {
*this = *this * v;
}
void operator/=(const bigint &v) {
*this = *this / v;
}
bool operator<(const bigint &v) const {
if (sign != v.sign)
return sign < v.sign;
if (z.size() != v.z.size())
return z.size() * sign < v.z.size() * v.sign;
for (int i = z.size() - 1; i >= 0; i--)
if (z[i] != v.z[i])
return z[i] * sign < v.z[i] * sign;
return false;
}
bool operator>(const bigint &v) const {
return v < *this;
}
bool operator<=(const bigint &v) const {
return !(v < *this);
}
bool operator>=(const bigint &v) const {
return !(*this < v);
}
bool operator==(const bigint &v) const {
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint &v) const {
return *this < v || v < *this;
}
void trim() {
while (!z.empty() && z.back() == 0)
z.pop_back();
if (z.empty())
sign = 1;
}
bool isZero() const {
return z.empty() || (z.size() == 1 && !z[0]);
}
bigint operator-() const {
bigint res = *this;
res.sign = -sign;
return res;
}
bigint abs() const {
bigint res = *this;
res.sign *= res.sign;
return res;
}
long long longValue() const {
long long res = 0;
for (int i = z.size() - 1; i >= 0; i--)
res = res * base + z[i];
return res * sign;
}
friend bigint gcd(const bigint &a, const bigint &b) {
return b.isZero() ? a : gcd(b, a % b);
}
friend bigint lcm(const bigint &a, const bigint &b) {
return a / gcd(a, b) * b;
}
void read(const string &s) {
sign = 1;
z.clear();
int pos = 0;
while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = s.size() - 1; i >= pos; i -= base_digits) {
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
z.push_back(x);
}
trim();
}
friend istream& operator>>(istream &stream, bigint &v) {
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream &stream, const bigint &v) {
if (v.sign == -1)
stream << '-';
stream << (v.z.empty() ? 0 : v.z.back());
for (int i = (int) v.z.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.z[i];
return stream;
}
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < (int) p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int i = 0; i < (int) a.size(); i++) {
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int) cur);
while (!res.empty() && res.back() == 0)
res.pop_back();
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b) {
int n = a.size();
vll res(n + n);
if (n <= 32) {
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++)
a2[i] += a1[i];
for (int i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < (int) a1b1.size(); i++)
r[i] -= a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
r[i] -= a2b2[i];
for (int i = 0; i < (int) r.size(); i++)
res[i + k] += r[i];
for (int i = 0; i < (int) a1b1.size(); i++)
res[i] += a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
bigint operator*(const bigint &v) const {
vector<int> a6 = convert_base(this->z, base_digits, 6);
vector<int> b6 = convert_base(v.z, base_digits, 6);
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
while (a.size() & (a.size() - 1))
a.push_back(0), b.push_back(0);
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < (int) c.size(); i++) {
long long cur = c[i] + carry;
res.z.push_back((int) (cur % 1000000));
carry = (int) (cur / 1000000);
}
res.z = convert_base(res.z, 6, base_digits);
res.trim();
return res;
}
}ans;
ll a[maxn],num[maxn],n,ky;
ll tot,cal,del,cnt[maxn];
int main(){
scanf("%lld",&n);
for(int i=1;i<=n;i++){
scanf("%lld",a+i);
num[i]=a[i];
}
sort(num+1,num+n+1);
ky=unique(num+1,num+n+1)-num-1;
ans=0;
for(int i=1;i<=n;cnt[a[i]]++,tot+=num[a[i]],i++){
a[i]=lower_bound(num+1,num+ky+1,a[i])-num;
ans+=num[a[i]]*(ll)(i-1);
ans-=tot;
if(num[a[i]+1]==num[a[i]]+1) ans+=cnt[a[i]+1];
if(num[a[i]-1]==num[a[i]]-1) ans-=cnt[a[i]-1];
}
cout<<ans<<endl;
return 0;
}